
Feature Learning
for

General Games

Cameron Browne

Search and Parallel Computing Unit
Advanced Intelligence Project (AIP)

RIKEN Institute, Tokyo
  

Oct 2017 — Mar 2018

Aim

General Game AI
‣ Play any given game
‣ Strong human level
‣ Standard hardware

Approach
‣Monte Carlo Tree Search (MCTS)
‣ Learn relevant features
‣Bias playouts

MCTS

General Game Playing
‣MCTS very successful
‣World champion AIs for last 10 years
‣ Still weak w/o domain knowledge

Improvement
‣Bias playouts
‣More realistic results
‣Better estimates

MCTS
‣Run N simulations
‣Build search tree

‣ Explore promising areas

Features

Computer Go

‣Geometric piece patterns

‣Handcrafted

‣ e.g. “Cut” pattern:  
– Gelly et al. (2006)

‣Bias MCTS playouts:  
– Win rate: 41% ⇒ 80%

Patterns

Automated Learning

‣Bouzy (2001):  
– Go, Retrograde analysis, MC

‣ Stern et al. (2006):  
– Go, Bayesian (harvested from expert games), MCTS  

‣ Lorentz (2017):  
– Breakthrough  
– TDL(ℷ) 
– MCTS 
– Okay results 
– Big file sizes!

Google DeepMind (I)

AlphaGo Lee
‣ Silver et al., Nature (2016)
‣ Fast rollout policy
‣Trained on expert games + self-play

‣Geometric piece patterns:  
– 3x3 for “non-response”  
– 12-cell diamond for  
 “response” moves

Google DeepMind (II)

AlphaGo Zero

‣ Silver et al., Nature (2017)

‣Trained through self-play

‣MCTS but no playouts!

‣3x3 convolution layer

Google DeepMind (III)

AlphaZero

‣ Silver et al., ArXiv (2017)

‣AlphaGo Zero approach: 
– Chess, Shogi, Go

‣ Superhuman level of play

AlphaZero

Good
‣ Superhuman results in difficult games
‣ Self-play (no expert database)
‣ Static and dynamic games
‣ Learns in good time
‣General solution?

Bad
‣Resources 

– Training, saving, playing
‣Regular grid
‣Case-by-case:  

– Architecture for each game  
– Trained from scratch (no transfer)

AlphaZero Resources

Training
‣5,000 x GPUs
‣~$25,000,000 hardware
‣ Several weeks
‣On standard machine with GPU: 

– 1,700 years (Pascutto, Computer Go list, 2017)  

Saving
‣ANN with up to 2,000,000 parameters:  

– >1gb per game

Play
‣Virtual machine (cloud)  

– 4 x TPUs

AlphaZero Geometry

Regular Square Grid
‣Go, Chess, Shogi
‣ Small images
‣ Ideal for CNNs

General Games
‣Other geometries
‣ Irregular bases

My Approach

Geometric Pattern Learning
‣Bias MCTS playouts
‣ Invariant under geometry
‣ Fast application
‣ Small memory footprint

Aim
‣ Improve MCTS to strong human level (not superhuman!)
‣Trainable on standard equipment
‣Playable on standard equipment

Features

Patterns
‣Geometric piece patterns
‣ Indicate good/bad moves
‣Use to bias MCTS playouts

Examples
‣Bridge extension/completion

Types
‣Proactive (non-response):  

– Predict good move
‣Reactive (response):  

– Reply to opponent’s last move

+

+

Geometry Invariant

Game Graph
‣Based on adjacency
‣Underlying board geometry

Cell Relations
‣Not coordinates
‣Relative locations
‣Turtle-like steps through adjacent cells

1-1

0

1-1

2

1

-2

-1

2

1

0

-1

-2

Example: Knight Move

Knight
‣Hippogonal
‣ Square grid: [1, 2]
‣Arbitrary graph: {0, 0, 1}

Invariant
‣Apply to other geometries
‣Transfer to other games

!

Pk = {0,0,1}

!

Implementation (I)

Game Features 1.1
‣ Java 8 app
‣ Five games so far:  

– Override Game class  
– Dozen expected

Game State
‣ Flat bitset (derived from standard BitSet class) 

– n bits per board cell (where n is a power of 2)

Patterns
‣ Each pattern contains m instances
‣ Each instance corresponds to a bitset
‣Pre-generated for all possible reflections, rotations, translations
‣ Efficient pattern matching

Implementation (II)

Example
‣Hex patterns

// + f
// f e

"Reactive bridge repair:All:act=<{-1}>:lst=<{}>:  
 rot=D:val=0.5:pat=<e{},f{0},f{-2},-{-1}>”

// #
// + e
// f
"Reactive edge bridge repair (1):1:act=<{}>:ref:  

 lst=<{1}>:rot=2:val=0.5:pat=<e{1},-{},f{2},#{0}>”

Results
‣ Efficient: Speed loss ~1-2% per pattern
‣ Effective: 55% ⇒ 85% win rate vs MCTS

‣ Small: <100 bytes per pattern

+

+

Benefits

Improve AI Strength
‣ Strong human level play (not superhuman!)

Reveal Strategies
‣Patterns encode strategies
‣ Explain in human-comprehensible terms
‣Transfer to other games
‣Reveal depth of game?

Reason

Game Quality
‣ Lantz et al. (2017)  

– Strategy ladder

Interestingness
‣Allis et al. (1991)  

– “intellectual challenge
neither too simple nor  
too hard”

Hypothesis
‣ Each related subset of

patterns encodes a strategy

Too simple Too hard

Strategy Example (I)

Quantum Leap
‣Move in line to capture
‣Distance = friendly nbors

MCTS
‣Unbeatable with 1–2s
‣Random playouts

Strategies
‣1. Form groups (max. movable pieces)
‣2. Form thin groups (max. moves)

Expected Patterns
‣1. Form groups (left)
‣2. Expand thinly (right)

Strategy Example (II)

Omega (2010)
‣ Players place a piece of each

colour per turn
‣ Score = product of  

group sizes

Who is winning?
‣Opaque
‣Unpopular
‣No strategy

White: 1×2×2×3×4 = 48 Blue: 1×2×3×6 = 36
Red: 1×2×4×5 = 40 Black: 1×4×7 = 28

Strategy Example (III)

MCTS
‣ Strong with 1–2s
‣Random playouts
‣ Emergent strategy:  

– Prefer groups of 3

Expected Patterns
‣1. Grow singletons (left)
‣2. Discourage groups > 3

Feature Learning

Feature Extraction
‣Harvest from random self-play games
‣ Frequent pattern mining

Frequent Tuples
‣1-tuple, 2-tuple, … , 6-tuple
‣Within three steps
‣Types: empty / off / friend / enemy / !empty / !off / !friend / !enemy

Feature Selection
‣ Self-play tournaments
‣Biased MCTS playouts
‣Optimise combinations

Random Self-Play (I)

Random Self-Play
‣Good for generation
‣Not for evaluation!

Example
‣Hex: Two common patterns  

– Pb: Bridge completion (reactive)  
– Pe: Prefer enemy edge (proactive)  

Random Self-Play (II)

Random Self-Play
‣ Edge pattern Pe encodes degenerate strategy
‣Outscores bridge pattern Pb in random play!

 Rand MCTS
 Pb 65% 85%  
 Pe 90% 35%

‣MCTS slower but required  
for meaningful evaluation

1

3

5
7

9

11

13

2

4

6
8

10

12

Summary

Aim
‣ Improve AI for general game playing
‣ Strong human-level play
‣ Standard equipment

Progress
‣Game representation finalised
‣ Feature representation finalised
‣ System implemented and working  

Next
‣ Feature learning (extraction and selection)
‣ Further testing
‣ Further games

