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General Game Al

» Play any given game
» Strong human level
» Standard hardware

Approach

» Monte Carlo Tree Search (MCTS)
» Learn relevant features

» Bias playouts



MCTS

» Run N simulations
» Build search tree

General Game Playing

» MCTS very successful

» World champion Als for last 10 years

» Still weak w/o domain knowledge

Improvement
» Bias playouts

» More realistic results s Exolore promising rons
» Better estimates
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Computer Go

» Geometric piece patterns

» Handcrafted

»e.g. “Cut” pattern:
— Gelly et al. (2006)

» Bias MCTS playouts:
— Win rate: 41% = 80%



Automated Learning

» Bouzy (2001):

— Go, Retrograde analysis, MC

» Stern et al. (2006):

— Go, Bayesian (harvested from expert games), MCTS

. Pattern shape file size | win rate of TDL version
» Lorentz (2017): 3 % 3 2 mb 93.5% £ 2.7
— Breakthrough 3X5 557 mb 34.9% + 3.0
—_TDL@Q) 4 %3 35 mb 43.0% + 3.1
5 3 490 mb 43.9% =+ 3.1
— MCTS 5x3 & 3x5 1.1 gb 44.8% + 2.9
_ Qkay results 4 x 4 1.9 gb 46.1% + 3.1
— Big file sizes! fxz)’ & 3x4 418 mb 46.3% + 3.1

game progress

4x3 & 3x4 81 mb 46.6% =+ 3.1




AlphaGo Lee » Geometric piece patterns:

» Silver et al., Nature (2016) — 3x3 for “non-response”
» Fast rollout policy — 12-cell diamond for
» Trained on expert games + self-play “response” moves
Rollout policy SL policy network RL policy network Value network
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Google DeepMind (I1)
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» Silver et al., Nature (2017) /\/\/\ /\/\/\ /\A/\ l
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» Trained through self-play

b Neural network training

» MCTS but no playouts!
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Google DeepMind (1)

AlphaZero

» Silver et al., ArXiv (2017)

» AlphaGo Zero approach:

— Chess, Shogi, Go

» Superhuman level of play
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Good

» Superhuman results in difficult games
» Self-play (no expert database)

» Static and dynamic games

» Learns in good time

» General solution?

Bad
» Resources
—Training, saving, playing
» Regular grid
» Case-by-case:
— Architecture for each game
— Trained from scratch (no transfer)



Training
» 5,000 x GPUs
» ~$25,000,000 hardware
» Several weeks
» On standard machine with GPU:
— 1,700 years (Pascutto, Computer Go list, 2017)

Saving
» ANN with up to 2,000,000 parameters:
— >71gb per game

Play
» Virtual machine (cloud)
— 4 x TPUs



Regular Square Grid
» Go, Chess, Shogi

» Small images

» Ideal for CNNss

General Games
» Other geometries
» Irregular bases




Geometric Pattern Learning
» Bias MCTS playouts

» Invariant under geometry

» Fast application

» Small memory footprint

Aim
» Improve MCTS to strong human level (not superhuman!)
» Trainable on standard equipment

» Playable on standard equipment



Patterns

» Geometric piece patterns

» Indicate good/bad moves

» Use to bias MCTS playouts

Examples
» Bridge extension/completion

Types
» Proactive (non-response):
— Predict good move
» Reactive (response):
— Reply to opponent’s last move
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Geometry Invariant

Game Graph
» Based on adjacency
» Underlying board geometry

Cell Relations
» Not coordinates
» Relative locations

» Turtle-like steps through adjacent cells
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» Hippogonal

» Square grid: [1, 2] i

» Arbitrary graph: {0, O, 1} —

. P, =1{0,0,1}
Invariant

» Apply to other geometries
» Transfer to other games
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Game Features 1.1

» Java 8 app

» Five games so far:
— Override Game class
— Dozen expected

Game State
» Flat bitset (derived from standard BitSet class)
— n bits per board cell (where n is a power of 2)

Patterns

» Each pattern contains m instances

» Each instance corresponds to a bitset

» Pre-generated for all possible reflections, rotations, translations
» Efficient pattern matching




Example
» Hex patterns

// + f

// f e
"Reactive bridge repair:All:act=<{-1}>:1lst=<{}>:
rot=D:val=0.5:pat=<e{},f{0},f{-2},-{-1}>"

// #

// + e

// f

"Reactive edge bridge repair (1):1:act=<{}>:ref:
lst=<{1}>:rot=2:val=0.5:pat=<e{1},-{},f{2},#{0}>”

Results
» Efficient: Speed loss ~1-2% per pattern
» Effective: 55% = 85% win rate vs MCTS

» Small: <100 bytes per pattern




Improve Al Strength
» Strong human level play (not superhuman!)

Reveal Strategies

» Patterns encode strategies

» Explain in human-comprehensible terms
» Transfer to other games

» Reveal depth of game?



Game Quality
» Lantz et al. (2017)
— Strategy ladder

Interestingness g"
» Allis et al. (1991) A
— “intellectual challenge I
neither too simple nor é
too hard”
Hyp othesis Computational Resources

» Each related subset of
patterns encodes a strategy



Quantum Leap
» Move in line to capture
» Distance = friendly nbors

MCTS
» Unbeatable with 1-2s
» Random playouts

Strategies
» 1. Form groups (max. movable pieces

)
» 2. Form thin groups (max. moves) : :
)

Expected Patterns
» 1. Form groups (left
» 2. Expand thinly (right)



Omega (2010)

» Players place a piece of each
colour per turn

» Score = product of
group sizes

Who is winning?
» Opaque

» Unpopular

» No strategy

O
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White: 1x2x2x3x4 =48 Blue: 1x2x3x6 = 36
Red: 1x2x4x5 =40 Black: 1x4x7 =28
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MCTS

» Strong with 1-2s

» Random playouts

» Emergent strategy:
— Prefer groups of 3
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Expected Patterns
» 1. Grow singletons (left)
» 2. Discourage groups > 3
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Feature Extraction
» Harvest from random self-play games
» Frequent pattern mining

Frequent Tuples

» 1-tuple, 2-tuple, ..., 6-tuple

» Within three steps

» Types: empty / off / friend / enemy / lempty / loff / lfriend / lenemy

Feature Selection

» Self-play tournaments

» Biased MCTS playouts
» Optimise combinations



Random Self-Play
» Good for generation
» Not for evaluation!

Example

» Hex: Two common patterns
— Pp: Bridge completion (reactive)
— Pe: Prefer enemy edge (proactive)




Random Self-Play

» Edge pattern P. encodes degenerate strategy

» Outscores bridge pattern Pp in random play! 9

Rand MCTS
Pb 650/0 850/0
Pe 900/0 350/0
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» MCTS slower but required
for meaningful evaluation



Aim

» Improve Al for general game playing
» Strong human-level play

» Standard equipment

Progress

» Game representation finalised

» Feature representation finalised

» System implemented and working

Next

» Feature learning (extraction and selection)
» Further testing

» Further games




