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Aim

General Game AI 
‣ Play any given game 
‣ Strong human level 
‣ Standard hardware 

Approach 
‣Monte Carlo Tree Search (MCTS) 
‣ Learn relevant features 
‣Bias playouts 



MCTS

General Game Playing 
‣MCTS very successful 
‣World champion AIs for last 10 years 
‣ Still weak w/o domain knowledge 

Improvement 
‣Bias playouts 
‣More realistic results 
‣Better estimates 

MCTS 
‣Run N simulations 
‣Build search tree 

‣ Explore promising areas



Features

Computer Go 

‣Geometric piece patterns 

‣Handcrafted 

‣ e.g. “Cut” pattern:  
– Gelly et al. (2006) 

‣Bias MCTS playouts:  
– Win rate: 41% ⇒ 80%



Patterns

Automated Learning 

‣Bouzy (2001):  
– Go, Retrograde analysis, MC 

‣ Stern et al. (2006):  
– Go, Bayesian (harvested from expert games), MCTS  

‣ Lorentz (2017):  
– Breakthrough  
– TDL(ℷ) 
– MCTS 
– Okay results 
– Big file sizes!



Google DeepMind (I)

AlphaGo Lee 
‣ Silver et al., Nature (2016) 
‣ Fast rollout policy 
‣Trained on expert games + self-play 

‣Geometric piece patterns:  
– 3x3 for “non-response”  
– 12-cell diamond for  
    “response” moves



Google DeepMind (II)

AlphaGo Zero 

‣ Silver et al., Nature (2017) 

‣Trained through self-play 

‣MCTS but no playouts! 

‣3x3 convolution layer 



Google DeepMind (III)

AlphaZero 

‣ Silver et al., ArXiv (2017) 

‣AlphaGo Zero approach: 
– Chess, Shogi, Go 

‣ Superhuman level of play 



AlphaZero

Good 
‣ Superhuman results in difficult games 
‣ Self-play (no expert database) 
‣ Static and dynamic games 
‣ Learns in good time 
‣General solution? 

Bad 
‣Resources 

– Training, saving, playing  
‣Regular grid 
‣Case-by-case:  

– Architecture for each game  
– Trained from scratch (no transfer) 



AlphaZero Resources

Training 
‣5,000 x GPUs 
‣~$25,000,000 hardware 
‣ Several weeks 
‣On standard machine with GPU: 

– 1,700 years (Pascutto, Computer Go list, 2017)  

Saving 
‣ANN with up to 2,000,000 parameters:  

– >1gb per game 

Play 
‣Virtual machine (cloud)  

– 4 x TPUs 



AlphaZero Geometry

Regular Square Grid 
‣Go, Chess, Shogi 
‣ Small images 
‣ Ideal for CNNs 

General Games 
‣Other geometries 
‣ Irregular bases 



My Approach

Geometric Pattern Learning 
‣Bias MCTS playouts 
‣ Invariant under geometry 
‣ Fast application 
‣ Small memory footprint 

Aim 
‣ Improve MCTS to strong human level (not superhuman!) 
‣Trainable on standard equipment 
‣Playable on standard equipment 



Features

Patterns 
‣Geometric piece patterns 
‣ Indicate good/bad moves 
‣Use to bias MCTS playouts 

Examples 
‣Bridge extension/completion 

Types 
‣Proactive (non-response):  

– Predict good move 
‣Reactive (response):  

– Reply to opponent’s last move 

+

+



Geometry Invariant

Game Graph 
‣Based on adjacency  
‣Underlying board geometry 

Cell Relations 
‣Not coordinates 
‣Relative locations  
‣Turtle-like steps through adjacent cells 
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Example: Knight Move

Knight 
‣Hippogonal 
‣ Square grid: [1, 2] 
‣Arbitrary graph: {0, 0, 1} 

Invariant 
‣Apply to other geometries 
‣Transfer to other games 

!

Pk = {0,0,1}

!



Implementation (I)

Game Features 1.1 
‣ Java 8 app 
‣ Five games so far:  

– Override Game class  
– Dozen expected 

Game State 
‣ Flat bitset (derived from standard BitSet class) 

– n bits per board cell (where n is a power of 2) 

Patterns 
‣ Each pattern contains m instances 
‣ Each instance corresponds to a bitset 
‣Pre-generated for all possible reflections, rotations, translations  
‣ Efficient pattern matching



Implementation (II)

Example 
‣Hex patterns 

//   + f
//  f e

"Reactive bridge repair:All:act=<{-1}>:lst=<{}>:  
    rot=D:val=0.5:pat=<e{},f{0},f{-2},-{-1}>”

//  #   
// + e
//  f 
"Reactive edge bridge repair (1):1:act=<{}>:ref:  

    lst=<{1}>:rot=2:val=0.5:pat=<e{1},-{},f{2},#{0}>”

Results 
‣ Efficient: Speed loss ~1-2% per pattern 
‣ Effective: 55% ⇒ 85% win rate vs MCTS 

‣ Small: <100 bytes per pattern

+

+



Benefits

Improve AI Strength  
‣ Strong human level play (not superhuman!) 

Reveal Strategies  
‣Patterns encode strategies 
‣ Explain in human-comprehensible terms 
‣Transfer to other games 
‣Reveal depth of game?



Reason

Game Quality 
‣ Lantz et al. (2017)  

– Strategy ladder 

Interestingness 
‣Allis et al. (1991)  

– “intellectual challenge 
neither too simple nor     
too hard” 

Hypothesis 
‣ Each related subset of 

patterns encodes a strategy

Too simple Too hard



Strategy Example (I)

Quantum Leap  
‣Move in line to capture  
‣Distance = friendly nbors 

MCTS 
‣Unbeatable with 1–2s 
‣Random playouts 

Strategies 
‣1. Form groups (max. movable pieces)  
‣2. Form thin groups (max. moves) 

Expected Patterns 
‣1. Form groups (left) 
‣2. Expand thinly (right)



Strategy Example (II)

Omega (2010) 
‣ Players place a piece of each 

colour per turn 
‣ Score = product of  

group sizes 

Who is winning? 
‣Opaque 
‣Unpopular 
‣No strategy

White: 1×2×2×3×4 = 48     Blue: 1×2×3×6 = 36 
Red:         1×2×4×5 = 40     Black:   1×4×7 = 28 



Strategy Example (III)

MCTS 
‣ Strong with 1–2s 
‣Random playouts 
‣ Emergent strategy:  

– Prefer groups of 3 

Expected Patterns  
‣1. Grow singletons (left) 
‣2. Discourage groups > 3



Feature Learning

Feature Extraction 
‣Harvest from random self-play games 
‣ Frequent pattern mining 

Frequent Tuples 
‣1-tuple, 2-tuple, … , 6-tuple 
‣Within three steps 
‣Types: empty / off / friend / enemy / !empty / !off / !friend / !enemy 

Feature Selection 
‣ Self-play tournaments  
‣Biased MCTS playouts 
‣Optimise combinations 



Random Self-Play (I)

Random Self-Play                                                       
‣Good for generation                                       
‣Not for evaluation!                                           

Example 
‣Hex: Two common patterns  

– Pb: Bridge completion (reactive)  
– Pe: Prefer enemy edge (proactive)  



Random Self-Play (II)

Random Self-Play    
‣ Edge pattern Pe encodes degenerate strategy 
‣Outscores bridge pattern Pb  in random play! 

        Rand     MCTS 
 Pb     65%      85%   
 Pe     90%      35% 

‣MCTS slower but required  
for meaningful evaluation 
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Summary

Aim 
‣ Improve AI for general game playing 
‣ Strong human-level play 
‣ Standard equipment 

Progress 
‣Game representation finalised 
‣ Feature representation finalised 
‣ System implemented and working  

Next 
‣ Feature learning (extraction and selection) 
‣ Further testing 
‣ Further games


