Feature Learning for General Games

Cameron Browne

Search and Parallel Computing Unit Advanced Intelligence Project (AIP) RIKEN Institute, Tokyo

Oct 2017 — Mar 2018

Aim

General Game AI

- Play any given game
- Strong human level
- Standard hardware

Approach

- ▶ Monte Carlo Tree Search (MCTS)
- ▶ Learn relevant features
- Bias playouts

MCTS

General Game Playing

- MCTS very successful
- ▶ World champion Als for last 10 years
- ▶ Still weak w/o domain knowledge

Improvement

- Bias playouts
- More realistic results
- Better estimates

MCTS

- ▶ Run *N* simulations
- ▶ Build search tree

Explore promising areas

Features

Computer Go

- Geometric piece patterns
- ▶ Handcrafted
- e.g. "Cut" pattern:
 - Gelly et al. (2006)

- ▶ Bias MCTS playouts:
 - Win rate: 41% ⇒ 80%

Patterns

Automated Learning

- ▶ Bouzy (2001):
 - Go, Retrograde analysis, MC

- ▶ Stern *et al.* (2006):
 - Go, Bayesian (harvested from expert games), MCTS
- ▶ Lorentz (2017):
 - Breakthrough
 - $TDL(\lambda)$
 - MCTS
 - Okay results
 - Big file sizes!

Dottom abone	£lo sino	in make of TDImaion	
Pattern shape	file size	win rate of TDL version	
3×3	2 mb	$23.5\% \pm 2.7$	
3×5	557 mb	$34.9\%\pm3.0$	
4×3	35 mb	$43.0\% \pm 3.1$	
5×3	490 mb	$43.9\% \pm 3.1$	
$5 \times 3 \& 3 \times 5$	1.1 gb	$44.8\% \pm 2.9$	
4×4	1.9 gb	$46.1\% \pm 3.1$	
$4 \times 3 \& 3 \times 4$ + game progress	418 mb	$46.3\% \pm 3.1$	
$4 \times 3 \& 3 \times 4$	81 mb	$46.6\% \pm 3.1$	

Google DeepMind (I)

AlphaGo Lee

- ▶ Silver et al., Nature (2016)
- ▶ Fast rollout policy
- ▶ Trained on expert games + self-play

- ▶ Geometric piece patterns:
 - 3x3 for "non-response"
 - 12-cell diamond for "response" moves

Google DeepMind (II)

AlphaGo Zero

- Silver et al., Nature (2017)
- ▶ Trained through self-play
- MCTS but no playouts!
- ▶ 3x3 convolution layer

Google DeepMind (III)

AlphaZero

- ▶ Silver *et al.*, *ArXiv* (2017)
- AlphaGo Zero approach:
 - Chess, Shogi, Go
- Superhuman level of play

AlphaZero

Good

- ▶ Superhuman results in difficult games
- Self-play (no expert database)
- Static and dynamic games
- ▶ Learns in good time
- ▶ General solution?

Bad

- ▶ Resources
 - Training, saving, playing
- Regular grid
- Case-by-case:
 - Architecture for each game
 - Trained from scratch (no transfer)

AlphaZero Resources

Training

- ▶ 5,000 x GPUs
- ▶~\$25,000,000 hardware
- Several weeks
- ▶ On standard machine with GPU:
 - 1,700 years (Pascutto, Computer Go list, 2017)

Saving

- ▶ ANN with up to 2,000,000 parameters:
 - ->1gb per game

Play

- Virtual machine (cloud)
 - 4 x TPUs

AlphaZero Geometry

Regular Square Grid

- Go, Chess, Shogi
- Small images
- ▶ Ideal for CNNs

General Games

- Other geometries
- Irregular bases

My Approach

Geometric Pattern Learning

- ▶ Bias MCTS playouts
- Invariant under geometry
- ▶ Fast application
- Small memory footprint

Aim

- ▶ Improve MCTS to strong human level (not superhuman!)
- ▶ Trainable on standard equipment
- Playable on standard equipment

Features

Patterns

- Geometric piece patterns
- ▶ Indicate good/bad moves
- Use to bias MCTS playouts

Examples

▶ Bridge extension/completion

Types

- ▶ Proactive (non-response):
 - Predict good move
- ▶ Reactive (response):
 - Reply to opponent's last move

Geometry Invariant

Game Graph

- Based on adjacency
- Underlying board geometry

Cell Relations

- Not coordinates
- ▶ Relative locations
- ▶ Turtle-like steps through adjacent cells

Example: Knight Move

Knight

- ▶ Hippogonal
- ▶ Square grid: [1, 2]
- Arbitrary graph: {0, 0, 1}

Invariant

- Apply to other geometries
- ▶ Transfer to other games

$$P_k = \{0,0,1\}$$

Implementation (I)

Game Features 1.1

- Java 8 app
- ▶ Five games so far:
 - Override Game class
 - Dozen expected

Game State

- ▶ Flat bitset (derived from standard BitSet class)
 - − *n* bits per board cell (where *n* is a power of 2)

Patterns

- ▶ Each pattern contains *m* instances
- ▶ Each instance corresponds to a bitset
- Pre-generated for all possible reflections, rotations, translations
- Efficient pattern matching

Implementation (II)

Example

Hex patterns

```
// + f
// f e
"Reactive bridge repair:All:act=<{-1}>:lst=<{}>:
    rot=D:val=0.5:pat=<e{},f{0},f{-2},-{-1}>"

// #
// + e
// f
"Reactive edge bridge repair (1):1:act=<{}>:ref:
    lst=<{1}>:rot=2:val=0.5:pat=<e{1},-{},f{2},#{0}>"
```

Results

- ▶ Efficient: Speed loss ~1-2% per pattern
- ▶ Effective: $55\% \Rightarrow 85\%$ win rate vs MCTS
- ▶ Small: <100 bytes per pattern

Benefits

Improve AI Strength

Strong human level play (not superhuman!)

Reveal Strategies

- ▶ Patterns encode strategies
- ▶ Explain in human-comprehensible terms
- ▶ Transfer to other games
- ▶ Reveal depth of game?

Reason

Game Quality

- ▶ Lantz *et al.* (2017)
 - Strategy ladder

Interestingness

- ▶ Allis et al. (1991)
 - "intellectual challenge neither too simple nor too hard"

Hypothesis

▶ Each related subset of patterns encodes a strategy

Strategy Example (I)

Quantum Leap

- Move in line to capture
- ▶ Distance = friendly nbors

MCTS

- ▶ Unbeatable with 1–2s
- Random playouts

Strategies

- ▶ 1. Form groups (max. movable pieces)
- ▶ 2. Form *thin* groups (max. moves)

Expected Patterns

- ▶ 1. Form groups (left)
- ▶ 2. Expand thinly (right)

Strategy Example (II)

Omega (2010)

Players place a piece of each colour per turn

Score = product of group sizes

Who is winning?

- Opaque
- Unpopular
- No strategy

White: $1 \times 2 \times 2 \times 3 \times 4 = 48$

Red: $1 \times 2 \times 4 \times 5 = 40$

Blue: $1 \times 2 \times 3 \times 6 = 36$

Black: $1 \times 4 \times 7 = 28$

Strategy Example (III)

MCTS

- ▶ Strong with 1–2s
- Random playouts
- Emergent strategy:
 - Prefer groups of 3

Expected Patterns

- ▶ 1. Grow singletons (left)
- ▶ 2. Discourage groups > 3

Feature Learning

Feature Extraction

- Harvest from random self-play games
- Frequent pattern mining

Frequent Tuples

- ▶ 1-tuple, 2-tuple, ..., 6-tuple
- Within three steps
- Types: empty / off / friend / enemy / !empty / !off / !friend / !enemy

Feature Selection

- Self-play tournaments
- Biased MCTS playouts
- Optimise combinations

Random Self-Play (I)

Random Self-Play

- Good for generation
- ▶ Not for evaluation!

Example

- ▶ Hex: Two common patterns
 - − P_b: Bridge completion (reactive)
 - − Pe: Prefer enemy edge (proactive)

Random Self-Play (II)

Random Self-Play

for meaningful evaluation

ightharpoonup Edge pattern $P_{
m e}$ encodes degenerate strategy

 \blacktriangleright Outscores bridge pattern P_b in random play!

			×
<u>Rand</u> <u>N</u>	<u>MCTS</u>		
P _b 65%	85%	8 2	
P _e 90%	35%		
		$\begin{array}{c c} \hline \end{array}$	
		13 4	
► MCTS slower	but required	(3)	

Summary

Aim

- ▶ Improve AI for general game playing
- Strong human-level play
- Standard equipment

Progress

- Game representation finalised
- ▶ Feature representation finalised
- System implemented and working

Next

- ▶ Feature learning (extraction and selection)
- Further testing
- Further games