Digital
d Ludeme
Project

LuDIil Programming Guide

Version 1.0

Cameron Browne Eric Piette

Department of Data Science and Knowledge Engineering (DKE)

Maastricht University

14 janvier 2019

°

RTINS
European Research Council
Established by the European Commission

Abstract

This document describes the basic operation of the LUDII general game system and its game
description grammar, and provides a number of guidelines for using the system effectively and
for correctly adding code to the LUDII code base.

Please contact the authors with any comments or corrections at:
{cameron.browne,eric.piette}@maastrichtuniversity.nl

Contents

1 Overview 5
1.1 Basic Principles e 5
1.2 Scope . . .o 6
1.3 Game Database o 6
1.4 Ludemes e e e e 7

1.4.1 Mathematical Profile 9
1.5 Architectureo 9

2 Common Module 10
2.1 Annotations e e e 10

3 Library Module 11
3.1 APIL . e e 11
3.2 Game State e e e e 12

3.2.1 The State Class e 14
3.2.2 The ItemStateContainer Class 14
3.2.3 Supported Game Types e 16
3.3 Graph Class o o 0o e 17
3.4 Ludeme Class Hierarchy 17

4 Grammar Module 19

4.1 Class Grammar v v i e e e e e e e e e e e e e 19
411 Syntaxo e e e 19
4.1.2 Generation e 20
4.1.3 Symbols 21
4.1.4 Symbol Return Types 21
4.1.5 Function and Constant Classes 22

4.2 Algorithm 23

4.3 Game Descriptions 24
4.3.1 Instantiation e 24
4.3.2 Formatting Guidelines L oL o 25
4.3.3 Optional Parameters L o 25
4.3.4 Explicit Parameter Names oL 25
4.3.5 Default Values 26
4.3.6 Library Structure L 26
4.3.7 Abstract Classes 26

4.3.8 Inner Classes e

4.3.9 Collections e
AT Module
5.1 Default AT Agents e
5.1.1 Lightweight Local Features
Player Module
6.1 Graphical User Interface (GUT)
6.2 Command Line Interface (CLI)
Environment
7.1 Compatibility
7.2 Repository.
7.3 Version Control L

Coding Style
8.1 Philosophy .

8.2 Coding Standard L e

8.3 Optimisations

Conclusion

28
28
28

30
30
33

34
34
34
35

36
36
37
44

45

Overview

The LUDII general game system is a software system for playing, evaluating, comparing, design-
ing and optimising a wide range of games. LUDII is being developed as part of the ERC-funded
Digital Ludeme Project and will be used to model the full range of traditional strategy games
throughout recorded human history. It must therefore support a wide range of games and
mechanisms, including nondeterministic elements and imperfect information (i.e. luck and
hidden information) and geometries of varied style and complexity.

This document is intended for anyone who will be adding code to the LUDII code base. It
outlines the basic principles behind LuDII, some design guidelines and constraints that should
be kept in mind, and some notes on the preferred coding style to maintain consistency in the
code base.

1.1 Basic Principles

Lubit is designed with the following principles in mind, in order of priority:

1. Generality: The system must support the full range of games required for the Digital
Ludeme Project. These will be detailed shortly in Section 1.2. The system should be as
extensible as possible with the capacity to easily add further functionality as required.

2. Clarity: Games should be described in the simplest, clearest way possible, such that the
core game concepts and mechanisms are encapsulated in discrete chunks that can be easily
manipulated — either automatically or by human designers — to optimise rule sets and
even design new games. This encapsulation is achieved using a ludemic approach (see
Section 1.4).

3. Performance: The system must be able to play out random simulations for any given
game with sufficient speed to allow meaningful Monte Carlo analysis, in particular Monte
Carlo tree search (MCTS) methods [10] which will be used for implementing default Al
agents for playing the games. Performance is measured in terms of complete random

playouts of each on a single thread of a standard consumer machine (e.g. single i7 core).
As a rule of thumb, it is desirable to achieve playout rates of at least:

e 200,000/s for simple games,
e 100,000/s for games of moderate complexity, and
e 10,000 for games of any complexity.

4. Compactness: The system should be implemented to produce as small a memory foot-
print as possible. Third party libraries should be avoided; all generated bytecode should
be derived from code contained within the LuDII project itself (with the exception of
standard Java libraries). It is intended to port the Lubi system to mobile devices.

Some compromises have therefore been made in the design and implementation. For ex-
ample, some standard software engineering principles have been violated in order to maximise
the clarity of the game descriptions (described in Section 4), and some standard performance
tweaks/hacks have been neglected for the sake of generality.

1.2 Scope

The Digital Ludeme Project deals with traditional games of strategy, i.e. games with no pro-
prietary owner [2, p.5] that exist in the public domain,* and in which players succeed through
mental rather than physical acumen.

This category includes most board games, some card games, some dice games, some tile
games, etc., and may involve non-deterministic elements of chance or hidden information as
long as strategic play is rewarded over random play. It excludes dexterity games, social games,
sports, video games, etc.

It is difficult to even estimate the number of known traditional strategy games. For ex-
ample, of the thousands of known Chess variants,? hundreds could fall under the umbrella of
“traditional”. There also exist over 800 known variants of Mancala, let alone the undocumented
ones [3].

1.3 Game Database

The aim is to model a representative sample of 1,000 of the world’s traditional strategy games
in the Lubpit Game Database, which will include the most influential examples throughout
history. For each representative game, several variant rule sets may be stored. Chess and
Mancala, for example, might be represented in the Game Database by say a dozen entries for
the key variants, each of which might contain several variant rule sets themselves.

Since one of the aims of the Digital Ludeme Project is to optimise known rule sets and
improve reconstructions where possible, then it might be necessary to test hundreds of rule
variants per entry in order to find improved versions. The Game Database will therefore
eventually contain hundreds of thousands of entries consisting of:

e the 1,000 representative games,

e their known variants, and

1The more precise distinction between traditional games and those invented by known individuals and
distributed by games companies [4] can lead to ambiguous cases [5].
2http:// www.chessvariants.com

e automatically generated reconstructions.

Further, it is anticipated that the LuDII system could be of particular interest to game
designers, as a tool for quickly prototyping and testing game ideas with unprecedented con-
venience and rigour. I therefore envisage a secondary database of modern or non-traditional
games that will act as a sandbox for game designers, which may eventually contain hundreds
or thousands of entries itself (plus automatically generated variants).

Each database (see Figure 1.1) entry should include the following information:

1. Description: Plain text description of the game, including its equipment and rules, in
the Lupi class grammar (explained in Section 4) in the form of LISP-like s-expressions
or symbolic expressions. Each game description should include a metadata section with
details such as the game’s designer and date of creation (if known), help text for playing
the game, “About” text describing the game and its context, GUI “hints” for displaying
the game optimally, etc.

2. Ezxecutable: Java bytecode for playing the game according to the Lubit API, compiled
directly from the above game description.

3. Al Hints: Plain text description of features relevant to the game for biasing MCTS
playouts (format to be decided), plus any other “hints” to help the AI achieve the desired
level of play. See Section 5 for details.

4. Cultural Profile: Plain text description of historical and cultural information relevant
to the game, such as where and when it was known (or thought) to have been played,
demographics of players, known precedents and antecedents, etc.

1.4 Ludemes

Games are modelled as structures of ludemes, i.e. game memes or conceptual units of game-
related information [6]. These constitute a game’s underlying building blocks, and are the
high-level conceptual terms that human designers use to understand and describe games.

For example, Tic-Tac-Toe might be described in ludemic form as follows:

- Ludeme 1
(game "Tic-Tac-Toe"
(play {(player "P1") (player "P2")} Alternating)
(equipment (board "Board" (square 3)))
(rules
(moves (to (index0f Mover) (empty)))
(end (line Mover Any 3) (result Mover Win))

An important benefit of the ludemic approach is that it encapsulates key game concepts
and gives them meaningful labels. This allows the automatic description of game rule sets,
allows comparisons between games, and potentially allows the automated explanation of learnt
strategies in human-comprehensible terms. Each ludeme corresponds to a Java class in
the Ludeme Library.

Bytecode ——— Executable GUI — Id
Name
Id
1 Game 1d
Designer Play
CreationDate =~ ——— Metadata Has LUDII [|—— Equipment

HelpText Rules
About
Al — Id
1d Description Id
NbPlayer \
\ Features
DateDiscover _——— Cultural
TymeType ——— Information
KnownPrecedents
Demographics KnownAntecedents

Figure 1.1: The Entity-Relationship diagram.

1.4.1 Mathematical Profile

Each ludeme will also be tagged with keywords indicated the basic mathematical principles
that it embodies. A mathematical profile can then be automatically derived for each game
based on its component ludemes. The taxonomy of mathematical principles and associated
keywords, and the exact tagging mechanism, are yet to be decided.

1.5 Architecture

The Lupi project is implemented in Java in the following modules (i.e. sub-projects):

e Common: Repository for common project-wide variables, constants, annotations and
methods shared by all modules.

e Library: The core Ludeme Library that contains all ludemes in a structured class hier-
archy. Games in the Game Database are defined in terms of these ludemes.

e Grammar: The mechanism for deriving the LUDII class grammar directly from the
Ludeme Library.

e AI: Collection of default Al agents for playing the games in the Game Database.

e Player: Main controller for playing games, including graphical (GUI) and command line
(CLI) interfaces.

Common Module

The Common module contains common project-wide variables, constants, annotations and
methods shared by all modules. The Global class contains global constants such as Max-
Players, MaxDimensions, MaxPieceCount, etc. The BitTwiddling class provides a number of
methods for low-level bitwise operations that can be useful for optimising playouts.

Each player within a given game is assigned a unique consecutive index starting at 1,
corresponding to the constants P1, P2, P3, etc. up to N players. These constants are used to
identify players and do not necessarily define the play order within a game. For example, in a
match of paired games, P1 might start the first game of the match while P2 starts the second
game of the match.

2.1 Annotations

The following Java annotations are implemented for LuUDII:

e Anon: Used to anonymise (i.e. hide the name of) selected class constructor parameters
in the generated LUDII class grammar.

e Name: Used to force the name of selected class constructor parameters to be shown in the
generated LUDII class grammar. This is the opposite of the Anon annotation.

e Opt: Used to specify that selected class constructor parameters are [optional] in the
generated LUDII class grammar.

Their use will be described in more detail in Section 4.

10

Library Module

The core Ludeme Library that contains all ludemes in a structured class hierarchy. Additional
support classes, such as API, may also be included.

3.1 API

The root Game class implements the following minimal API. All compiled games must support
this API:

Java 1

public void create ();

public void start (Context context);

public List<Action> actions(Context context);

public void apply (Context context, Action action);
public Status playout (Context context, List<AI> ais);
public Controller getController (int resolution);
public View getView (int resolution);

Where:

e FEach Context object contains a reference to the relevant Game object and its static final
data members (equipment, players, rules, etc.) and a reference to the current Trial.

e Each Trial object is a record of a complete game played from start to end, including the
moves made and hash values of intermediate states if needed.

e Fach Action object describes one or more atomic actions to be applied to the game
state to effect a move. Actions typically include removing components from containers,
adding components to containers, changing component counts or states within containers,
deciding which player moves next, etc.

11

e Each AI object describes the AI implementation chosen for each player, including com-
putational budget/time limits, hints such as features for biasing playouts, etc.

e The Controller object provides the mechanism for updating the game state based on

user input such as mouse clicks.

e The View object provides the mechanism for showing the current game state on the

screein.

The APTI class (see Figure 3.1) is a support class and not a ludeme. It is included at this
level in the class hierarchy (i.e. below the root Game class) as additional domain types
beyond games may be added to the system in future. The user defines games in the
Lubil class grammar but executes them through the API. This API decouples the grammar
from its implementation from the user’s perspective.

PLAYER

Referee
LIBRARY
<interface>> <interface>
Action API
T
1
Trial Context Game \
i
Status
State
Rules
int winner;
int[] score; Metadata -
List<Start> start;
Moves move;
List<PostCondition> posts;
List<End> ends;
Player Play
TimeType time;

Equipment

Figure 3.1: The general diagram of the API.

3.2 Game State

Games (see Figure 3.1) are described in terms of:

e Play: Number of players and type of game (alternating, discrete, realtime, etc.).

e FEquipment: Equipment used for playing the game.

12

e Rules: Rules for playing the game, including rules for: start, moves and end.
The equipment (see Figure 3.2) is defined according to a component/container model, where:

e A Component is an atomic item of equipment, such as a playing piece, dice, tile, card, etc.
Components may have specified constant properties (owner, size, value, etc.) in addition
to dynamic properties that may vary throughout each trial (state, direction, etc.).

e A Container holds one or more components, such as a board, rack, hand, cup, bowl,
pool, etc.! Each Container has an associated Graph object that defines playable Sites
at which Components can be placed, and adjacencies between them (see Section 3.3).

All equipment implements the Drawable interface, which means that each item of equipment
must be able to draw a default bitmap image for itself at a given resolution, for displaying the
board state on the screen. Containers must be able to draw their current Components at the
appropriate positions, orientations, states, etc.

LIBRARY

Equipment

]
Component

String name;
int index; - -
int owner; :
int value; .
int colour; |
1
1
I

Container

int dirn;

String name; |« - - - - - - - - ______ .
int index;

<interface>

Ereraln Drawable

Figure 3.2: The general diagram of the equipment.

The rules of a game are divided in four types:
e Start rules: applied at the beginning of a game.

e Moves rules: defined all the legal moves in the current state.
e PostCondition rules: applied after each move played.

e End rules: used to know if the state is terminal or not.

IContainers may also recursively hold sub-containers with independent state information (sub-state, sub-
direction, etc.) although it is not clear if this degree of functionality is required for traditional games. The only
game I know that would benefit from such a mechanism is the non-traditional game Pentago.

13

https://boardgamegeek.com/boardgame/19841/pentago

All theses rules are applied in the following method in the Game class:

Java 2

public void apply(final Context context, final Action action };

3.2.1 The State Class
The game state is defined by the following class:

Java 3

{

}

private int
private final ItemState []

public final class State

info ;

itemState ;

Where:

e The variable info encodes general state information including the player indices of the
current, next and previous movers, and which players are still active (useful for multi-

player games).

e The list of ItemState objects describes the state for each piece of equipment. For the
moment, components are stateless entities; only containers contain further state informa-

tion.

3.2.2 The ItemStateContainer Class

Each container has an associated state defined as follows:

p

Java 4
public abstract class ItemStateContainer extends ItemState
{
protected final ChunkSet what;
protected final ChunkSet who;
protected final ChunkSet count;
protected final ChunkSet state;
private final Region empty;
}
Where:

e ChunkSet is a custom bitset class extended from the standard java.util.BitSet for
added functionality. The member variable:

— ChunkSet what specifies the item index of the component at each site (0 if empty).

— ChunkSet who specifies which player owns each site (0 if none).

— ChunkSet count specifies how many identical components are on at each site (null
if not needed).

14

— ChunkSet state specifies the state of the component at each site (null if not needed).
Component states might include direction, side, promotion status, etc.

Note that constants used in the Ludeme Library should generally be positive,
to avoid sign issues when storing their values as chunks in ChunkSet objects.

e Sites specifies a set of playable sites within a container. The member variable empty
maintains the list of currently empty sites in the this container, for fast empty cell check-
ing.?

The ChunkSet class extends the standard java.util.BitSet by subdividing its bits into reg-
ularly sized chunks that encode positive integer values in compact form. An additional con-
structor is provided to define the chunk size and number of chunks (typically the number of
playable sites in the container):

Java 5
public ChunkSet(final int chunkSize, final int numChunks) {...}

Note that chunkSize should be a power of 2 between 1 and 64, in order to avoid chunks
straddling long boundaries and thus reducing performance. Chunks are accessed and set as
follows:

Java 6

public int getChunk(final int chunk) {...}
public void setChunk(final int chunk, final int value) {...}

The main reason for using the custom ChunkSet class is for its fast feature-matching capabili-
ties. Lightweight local features (described in Section 5.1.1 can be used to bias MCTS playouts
with negligible performance impact using the following function:

Java 7
public boolean matches(final ChunkSet mask, final ChunkSet pattern)

{
if (wordsInUse < mask.wordsInUse)
return false;
for (int n = 0; n < wordsInUse; n++)
if ((words[n] & mask.words[n]) != pattern.words[n])
return false;
return true;

}

ChunkSet also supports left and right shifts, which the standard java.util.BitSet class does
not.

2While a BitSet could be used to indicate empty cells within a container, the Sites class was implemented
to allow element removal. However, BitSet might proove a better choice when other operations such as union
are added.

15

3.2.3 Supported Game Types

The ItemStateContainer class is intended to support a wide range of games, including games
for which the following information is required per site:

Owner of site (e.g. Tic-Tac-Toe).
Index of component (e.g. Chess).

Owner of site and index of component (e.g. Conhex, in which pieces are placed on the
board to claim regions).

Component count (e.g. Mancala).

Component state (e.g. Stratego).

That’s why the LUDII system provides some different classes for game type extendes from
the ItemStateContainer:

ItemStateContainerCount: Game with one component by player but more than one com-
ponent by site.

ItemStateContainerIndex: Game with more than one component by player.

ItemStateContainerIndexCount: Game with more than one component by player and
more than one component by site.

ItemStateContainerIndexCountState: Game with more than one component by player,
more than one component by site and many local states for each component.

ItemStateContainerIndexState: Game with more than one component by player and
many local states for each component.

ItemStateContainerPlayer: game with one component by player.

ItemStateContainerState: game with one component by player but many local states for
each component.

The LUDII system provides three others special game states:

Stacking games are a special case because a complete layer of sites for each stacked level,
as required. That’s why a specific ItemStateContainerStacking class is implemented,
for handling stack-related operations such as querying who owns the stack, moving the
stack as a single entity, etc.

Boardless games whose containers grow iteratively as components are placed, such as
Domino games, are handled by adding Sites to the container as needed and updating
the associated Graph object with necessary adjacency information. To do that two more
ChunkSet are used in ItemStateContainerBoardless abstract class:

— ChunkSet playable denotes the sites playable in the current state
— ChunkSet occupied specifies the sites occupied in the current state
Games with hidden information requires to define if a site is visible or hidden to each

player in any state. That’s why a ChunkSet hidden is defined in the ItemStateCon-
tainerHidden.

Each container chooses and instantiates the appropriate ItemState type at run-time, when
the Game object is created. This is done in the Constructor of the State class:

16

Java 8
public State(final Game game);

This class uses some others methods define in the Game class:

e boolean requiresItemIndices(): True if more than one component is owned by a
player.

e boolean requiresStack(): True if one ludeme needs a stack.
e boolean requiresCount(): True if one ludeme needs a counter.
e boolean requiresState(): True if a component has more than one local state.

e boolean requiresHiddenInformation(): True if one ludeme needs some hidden infor-
mation

e boolean isBoardless(): True if one of the container is boardless.

3.3 Graph Class

Each container in a game definition has an associated Graph class, which defines:

e A list of Cell objects that define playable sites at which components (and possibly nested
containers) can be placed. Sites are labelled 0, 1, 2, 3, ... within each container. A Loc is a
record of a location defined by container index and site index (and optional level number).
The average cell size is used to initialise the graphics for associated components.

e A dual of the graph is maintained, where each Vertex defines a cell centre and each Edge
defines adjacency between two cells. Adjacencies are stored both by: 1) cell index, and
2) cardinal direction from each cell (N, E, W, S, NE, SE, NW, SW, U (up), D (down),
UN, UE, US, UW, etc.).

For example, Figure 3.3 shows a game with a single container (the board, blue) and its dual
(grey) revealing cell adjacencies.

Note that the game graph may be modified for same games, such as “graph games” in which
player moves involve operations on the graph (e.g. adding or cutting edges or vertices), or for
boardless games such as Dominoes in which an implied board incrementally grows as pieces
are placed. For such games, it may be necessary to include a local copy of the graph state in
the container’s game state object, to be modified as appropriate.

Some different information are pre-generating and storing in the Graph class (corners of
the board, exterior vertices, top of the board, ect.) and in the Vertex class (adjacent vertices,
neighbours in each possible direction, the turtle positions, ect.)

3.4 Ludeme Class Hierarchy
The following directory tree shows the key Java packages (i.e. folders) in the Ludeme Library:

game
metadata

lay
pL model

17

a'aVA YA M YAMYA S
PP PPN
AVaRVARPaaaRvanta

VARV AR VARV AR

Figure 3.3: A board container and the dual of its graph (which is itself a graph).

L_player

| equipment
component
container
basis
board

| rules
start
moves
postCondition
end

| functions
ints
booleans
bitset
region

, _Types

The actual Java class for each ludeme should be located in the relevant package in this hierarchy.
Appendix A shows the grammar generated from this class hierarchy.

18

Grammar Module

The Grammar module provides the mechanism for deriving the LUDII class grammar directly
from the Ludeme Library. The mechanism is an improvement of the version described in an
earlier paper [7] and involves two basic steps:

1. Forward Step: Generate the grammar from the classes Ludeme Library.

2. Backward Step: Compile game descriptions into executable bytecode by instantiating the
relevant classes in the Ludeme Library.

4.1 Class Grammar

The class grammar is set of production rules in which sequences of symbols on the RHS are
assigned to a monterminal symbol on the LHS, very much like an Extended Backus-Naur Form
(EBNF) grammar. It is intrinsically bound to the underlying code library, but is a context-free
grammar that is self-contained and can be used without knowledge of the underlying code.

4.1.1 Syntax

The basic syntax of the class grammar is as follows:

?8 Grammar 1

<class> ::= { (class [{<arg>}]) | <subClass> | terminal }
where:
<class> denotes a LHS symbol that maps to a class in the code library (i.e. ludeme).

(class [{<arg>}]) denotes a class constructor and its arguments.
<subClass> denotes a subclass derived from class.
terminal denotes a terminal symbol (fundamental data type or enum).

19

[...] denotes an optional item.
{...} denotes a collection of one or more items.
| denotes a choice between options in the RHS sequence.

Class names typically start with an uppercase character, but are converted to lowerCamel-
Case in the grammar for readability, convenience, and in keeping with the traditional form of
EBNF style grammars. Appendix A shows the grammar generated from the Ludeme Library
summarised in the previous section.

4.1.2 Generation

The forward step of converting source code to grammar involves recursively parsing the code
library from a specified root class (Game in this case) downwards, storing a new symbol for
each new class encountered. A chain of dependency is then created from the root class, linking
the arguments of each visited constructor by data type, until terminal symbols are reached.
Fundamental data types and enums constitute terminals, while all other user-defined classes
constitute non-terminals.

The grammar is generated with each class name forming the LHS symbol of a production
rule, whose RHS is a sequence of constructors that instantiate that class (or subclasses derived
from it) and their parameters. For example, the following abstract base class:

Java 9
public abstract class Start {...};

and its two derived subclasses:

Java 10
public class Place extends Start

{
}

public Place(final String what, final int where)

Java 11
public class Store extends Start

{
}

public Store(final int who, final String what, final int count)

generate the following production rules:

?8 Grammar 2

<start> ::= <place> | <store>
<place> ::= (place (what String) (where int))
<store> ::= (store (who int) (what String) (count int))

The resulting grammar is a summary of the class hierarchy, based on constructors and pa-
rameters, that offers full functionality while hiding the implementation details. The program-

20

ming language (Java) effectively becomes the game description language; it should theoretically
be possible to add to the system almost any functionality that can be defined in Java.

4.1.3 Symbols

Each symbol in the grammar is one of the following SymbolTypes:
e Primitive: Primitive Java data type (int, boolean, etc.)

e Predefined: Predefined data types from standard Java libraries (java.lang.String,
java.util.Bitset, etc.) and custom data types used by the Ludeme Library (State,
Action, etc.).

e Constant: Values of enum types defined within ludeme classes.
e Class: User-defined ludeme classes.

Each symbol object has a boolean isList member variables indicating whether that sym-
bol actually refers to a list of symbol objects of that type, and an int nesting member variable
indicating whether the symbol actually refers to an array of symbols and the number of array
dimensions (default value nesting = 0 indicates no array). We can therefore distinguish be-
tween the symbols <action> and <list<action>> even though they both refer to the same
base object type.

4.1.4 Symbol Return Types

Each class returns an object of its own type through its constructor by default. However, it
is desirable to allow symbols to specify a return type apart from themselves, in order to allow
ludemes to be chained into complex structures in a clear way. For example, it is convenient to
specify that the Or class takes two boolean arguments and returns a boolean result, as follows:

?8 Grammar 3

<boolean> ::= boolean | <or>
<or> ::= (or <boolean> <boolean>)

Symbol return types can be overridden by defining an optional eval (final Context con-
text) method for that class. For example, the Or class described above implements the
BooleanFunction interface which defines eval (final Context context) as having a boolean
return type:

p

Java 12

public interface BooleanFunction

{
}

public boolean eval(final Context context);

Note that every non-equipment ludeme must define an eval(final Context con-
text) method. This is because the base Game class executes the various game-related functions
defined in the API by calling eval () on the appropriate ludeme classes. For example, the fol-
lowing method in Game generates the set of legal actions for the current state according to the
game’s movement rules:

21

¢ Java 13

public List<Action> actions(final Context context)

{
}

return rules.moves().eval(context);

Ludemes describing game rules (as opposed to equipment) do not need to override their
return types, so must implement the following interface to ensure that an eval (final Context
context) method exists but has a void return type:

¢

Java 14
public interface Rule
{
public void eval(final Context context);
}

4.1.5 Function and Constant Classes

It is desirable for certain constructor arguments to allow both primitive data types and functions
that return those types. For example, any integer function that returns an int can be used for
any <int> argument:

<int> ::= int | <add>
<add> (add <int> <int>)
<indexOf> ::= (indexOf <String>) | (indexOf <roleType>)

This allows more complex and interesting mechanisms to be defined in the grammar by
chaining functions together. For example, the following rule describes a winning condition if
the current mover completes a line of length 3:

" Ludeme 2
(line Mover Any (length 3))

whereas the following rule describes a winning condition if the current mover completes a line
whose length is their player index plus 2:

° Ludeme 3
(line Mover Any (length (add (index0f Mover) 2)))

This interchangeable mixing of primitive data types and functions with the appropriate
return type is achieved by defining custom Function and Constant class types for each such
return type. For example, the following IntFunction and IntConstant classes allow the
interchangeable int / <int> mechanism described above:

22

Java 15

public interface IntFunction

{ public int eval(final Context context);
}
public final class IntConstant implements IntFunction
{ protected final int a;
public IntConstant (@Anon final int a)
{
this.a = a ;
}
@OQOverride
public int eval(final Context context)
{
return a;
}
}

There is of course some overhead cost in having to instantiate constant values through the
eval () method rather than passing those values directly, especially for primitive data types,
but this cost appears to be minimal and is perhaps largely circumvented by optimisations
performed by the HotSpot compiler.

‘TODO : CBB: But if any of you guys can devise a better way of achieving this, please let me know!

Such Function / Constant class pairs are currently defined for the following return types:
e int

e boolean

e BitSet

e Region

4.2 Algorithm

The grammar is constructed using the following steps:

1. createSymbols(rootPath): Create a Symbol object for each class, inner class and enum
value from the rootPath (i.e. game package) downwards.

2. createRules(): Create a potential Rule object for each symbol with the symbol as LHS,
except for Constant symbols.

3. addReturnTypeClauses(): For each symbol whose return type differs from its class
type, by implementing an eval(final Context context) method with a non-void re-
turn value, add that symbol as a new Clause on the RHS of the rule with that return
symbol as LHS. This allows rule clauses to be gathered by return type rather than class
type, which is much clearer and more convenient when defining games in the grammar.

4. crossReferenceSubclasses(): For each symbol that represents a derived class, add
that symbol as a new Clause on the RHS of the rule with its superclass as LHS.

23

5. replaceListFunctionArgs(): For each symbol that is a ListFunction (explained in
Section 4.1.5), replace that symbol with the list’s base symbol type and set its isList
value as true. For example, all occurrences of actionListFunction will be replaced by
<list<action>>, for greater flexibility in the grammar.

6. linkToPackages(): Traverse the rules generated for the root package (i.e. game) and
recursively visit the rule associated with each type of argument of each clause (if not
already visited), marking each such rule as “visited”. Only those rules marked as “visited”
are shown in the grammar. Generally, any rule whose LHS does not occur in the RHS of
another rule is not shown in the grammar (apart from the root <game> rule).

7. setDisplayOrder(): Prioritise the order in which packages are displayed so that the
grammar follows the basic structure of the Ludeme Library but lists the functions and
types at the end, and prioritise the order in which rules are displayed per package so that
rules derived from base classes are listed first.

8. removeRedundantFunctionNames(): Tidy up the grammar by removing unwanted left-
overs from step 5.

The constructor for a given class is added as a clause to the RHS of a rule if the LHS of that
rule is:

1. The return type specified by the class’s eval() function (higher priority), or
2. The class itself (a constructor returns its own type).

In other words, classes (represented by symbols) are gathered by return type when determining
rules in the grammar.

4.3 Game Descriptions

Each individual game is described as a symbolic expression (s-expression) compatible with the
LubiI class grammar. For example, Tic-Tac-Toe may be described as follows:

~° Ludeme 4
(game "Tic-Tac-Toe"
(play {(player "P1") (player "P2")} Alternating)
(equipment (board "Board" (square 3)))
(rules
(moves (to (index0f Mover) (empty)))
(end (line Mover Any 3) (result Mover Win))

4.3.1 Instantiation

Game descriptions are parsed in a top-down manner [8, p. 225], with each (class ...)
instance matched with its generating constructor, and parameters recursively instantiated as
required. The calling app can then use the JavaCompiler and associated classes from the
javax.tools library to compile the assembled code and produce an executable version of the
game.

24

To maximise extensibility, it was initially envisaged that the game author may be allowed
to append their own custom Java code to the end of the game description file, and call its
constructors from within the description as per any other constructor defined in the grammar.
However, security concerns make this an undesirable option.

‘TODO : CBB: the instantiation step has not been implemented yet (20/9/2018).

4.3.2 Formatting Guidelines

While the class grammar is conceptually decoupled from its generating code, the programmer
can make the grammar cleaner and clearer by following some basic formatting guidelines.
Clarity in the grammar is paramount! Please follow these guidelines when adding code
to the LUDII code base.

4.3.3 Optional Parameters

Constructor arguments can be explicitly specified as [optional] items in the grammar using
the custom annotation @0pt. For example, the following code:

p

Java 16
public Board(final Basis basis, @Opt final Modify [] modify)

will generate the following rule with an optional parameter:

?8 Grammar 5

<board> ::= (board <basis> [{<modify>}])

Parameters can also be implicitly made [optional] by providing multiple constructors for
a class, such that parameters that occur in one constructor but not another are interpreted as
optional. For example, the following pair of constructors would produce the same rule shown
above:

Java 17

public Board(final Basis basis)
public Board(final Basis basis, final Modify [] modify)

The explicit @0pt approach is recommended as it is simpler and less error prone. The
implicit approach, although more conceptually elegant, requires care to avoid ambiguous cases,
encourages duplication of code, and complicates the initialisation of default values.

4.3.4 Explicit Parameter Names

Constructor parameters that are simple (terminal) data types are explicitly labelled in the
grammar by their parameter name, prepended to each argument type as follows. This makes
the grammar self-documenting to some extent, easier to interpret and reduces ambiguity and
confusion:

(className (argNamel <argTypel>) (argName2 <argType2>) ...)

25

For example, this:

?8 Grammar 6

<what> ::= (what (who int) (where int))

is more meaningful to the user than this:

?8 Grammar 7

<what> ::= (what int int)

It is sometimes desirable to anonymise named parameters, where this simplifies the grammar
and does not create ambiguity; for example, the two parameters in (add int int) do not
need naming. Such parameters can be explicitly denoted using the custom annotation @Anon
to override the default behaviour.

Conversely, parameters representing complex (non-terminal) data types are not named in
the grammar by default, as the data type itself usually gives enough information to infer the
parameter’s purpose. However, this behaviour can also be overridden to explicitly name such
parameters using the custom annotation @Name. Note that parameter naming requires the use
of Java version 8 for the relevant reflection call, but warrants the move to this version.

4.3.5 Default Values

It is useful to set default values for member variables of all classes described in the grammar,
in case their corresponding constructor parameters are made optional. However, this is com-
plicated by the fact that we also want to declare them as final and make the instantiated
objects immutable if possible, as per good object oriented design practice [9, pp. 73-80].

Java only allows final member variables to be initialised once in the class’s execution
flow. This is handled in the class grammar by passing parameter values up the super(...)
constructor chain as appropriate, and instantiating missing values due to optional parameters
with their default values in the appropriate constructors. Care must be taken to instantiate
the same default values across all constructors for each class, for consistency.

4.3.6 Library Structure

The LUDII code library is organised to reflect the underlying class structure, with each Java
package containing the base class of the same name and immediate subclasses that will create
items in the RHS sequence for the corresponding grammar rule. This makes it easier to navigate
and maintain the code library using the class grammar as a reference. It also makes it easier to
locate the actual classes associated with ambiguous symbols with the same name but different
return types, such as the following:

o (or <boolean> <boolean>) => boolean

e (or <list<action>> <list<action>>) => <list<action>>

4.3.7 Abstract Classes

The programmer can influence the format of the generated grammar through judicious use of
abstract classes. Constructors for abstract classes are not shown in the grammar as they

26

cannot be instantiated by the user. However, interfaces should be used rather than abstract
classes where possible.

4.3.8 Inner Classes

The programmer is free to use inner classes. These will appear in the grammar.

4.3.9 Collections

Use Lists rather arrays to define collections where possible.

27

AT Module

The AI module contains the collection of default Al agents for playing the games in the Game
Database. External users may use the default Als, provide their own, or run tournaments
between Al agents.

5.1 Default AT Agents

AT move planning will be performed using MCTS with playouts biased by strategies learnt
through self-play. MCTS has become the preferred approach for general game playing over
recent years, due to its ability to devise plausible actions in the absence of any tactical or
strategic knowledge about the given task. Although it can prove weaker for some games than
others, it provides a good baseline level of Al play for most games.

The combination of deep learning with MCTS has recently had spectacular success with
Go [11]. However, this level of superhuman performance is not required for this project,
where a more modest level of play pitched just beyond average human level is preferable, in
order to estimate the potential of games to interest human players. Superhuman Al that plays
differently to humans could actually bias evaluations; instead, we want an Al that makes moves
that human players would plausibly make. We call such skill-adjusted AT agents plausible AI[1].
This means that it may be necessary to actually impede the Al in some cases, in order to reduce
it to the desired level of play.

5.1.1 Lightweight Local Features

To elevate MCTS to a sufficient level of play for all games, playouts will be biased with domain-
dependent information in the form of lightweight features that capture geometric piece patterns,
learnt through self-play. For example, the pattern shown in Fig. 5.1, which completes a threat-
ened connection in connection games played on the hexagonal grid, improves MCTS playing
strength when incorporated into the playouts of such games [12].

Such patterns represent local strategies that human players typically learn to apply. They

28

O)
.O®

Figure 5.1: A strong pattern for connection games on the hexagonal grid.

will not capture more complex global strategies, but should serve to improve MCTS to plausible
levels of play, and — importantly — could give an indication of a game’s strategic potential.

Lightweight local features are described in a simple and compact plain text language (exact
format to be finalised) that describes geometric relationships between the actors within each
feature independently of any underlying board topology (beyond adjacency of sites). This
means that features may be transferred easily and meaningfully between games of differing
topology.

One advantage of using the custom ChunkSet data type for describing game state informa-
tion is that such lightweight local features can be used to bias MCTS playouts efficiently and
with negligible impact on performance (per feature) as explained in Section 3.2.

29

Player Module

The Player module (see Figure 6.1) includes a Referee object for managing a currently se-
lected game, and a MainView object consisting of a set of custom panes framed within a
javax.swing. JPanel for showing the current board state and allowing user interaction. Note
that any use of javax.swing should be replaced by its javafx equivalent as future
java.swing support is not guaranteed.

PLAYER

Player

Referee MainView

Figure 6.1: The general diagram of the Player module.

6.1 Graphical User Interface (GUI)

Figure 6.2 shows the standard LubDit GUI for a simple default game. The interface is simple
and clean, with an emphasis on displaying the game and its current state clearly and without

30

ambiguity, and undecorated by theme. The main class PlayerApp initializes the GUI.

Ludii File Grammar Came Al Analysis View Help

C Player 1

Status

Player 1 to move.

O@

Figure 6.2: The default Lupit GUIL.

Each piece of equipment defined for a given game implements the Drawable interface and
can draw itself, scaled appropriately for the current window size. Each container should be
able to draw its components at the appropriate scale at the appropriate positions.

Alternative view types, such as 3D perspective views — especially useful for stacking games,
as shown in Figure 6.3 — may be added at a later date.

Functionality may be added in future to allow users to provide custom graphics for equip-
ment to be used instead of the self-drawn default graphics. However, this would hugely inflate
the memory footprint of the resulting system due to the additional image resources, so might
be more appropriate for deriving single-game applications with custom graphics from the Game
Database.

Pending the implementation of all the database in the system, a temporary Loading System
is used to run the different games. The GameList class defined all the games with the appropri-
ate ludemes for each of them. The Figure 6.4 shows a part of the current loading system filled
by the DBView class and modeled by the DBTableModel class. This is possible to add some
others buttons in the JTable shows by the loading system thanks to the ManagePane Class.

TODO : ERIC: Update Button, Delete Button, ect. ‘

ATl the classes defined in the dbView.renderer package are useful to manage the GUI of
the loading system and they have to be adapted when the database will be ready to call the
Commons module.

31

Figure 6.3: A prototype stacking game and suggested 3D perspective view.

Figure 6.4: A part of the current loading system.

32

HHHHEAHHEHEHEEEHEHEAEAEEEES
BB |E (%8 BB B|E(E|E|§ B|0BBE|EEEE|EEEEREZ

Some shortcuts are available:

CTRL + A: To show the axes

CTRL + B: To show the board

CTRL + C: To run a time move count

CTRL + D: To show the dual

CTRL + G: To generate the grammar

CTRL + I: To show the cell indices

CTRL + L: To open the Loading system

CTRL + M: To make a move with the AI choosen (Random by default)
CTRL 4+ N: To create a new instance of the game
CTRL + P: To run a complete playout

CTRL + R: To restart the game

CTRL + T: To run a time random playouts

6.2 Command Line Interface (CLI)

The command line interface (CLI) is defined in the PlayerCli class. This is used primarily
for running experiments. This is the main command lines:

-h: to print the help
-l: to print all the games available

-xp all to run random playouts on all games with 30 seconds of warming up time and 120
seconds by game.

-xp string:gameName int:nbRow int:nbCol int:timeWarmingUpOnSeconds int:timeLimitOnSeconds:
to run a specific game with nbRow rows, nbCol columns with a specific warming up time
and a time limit for the experiment.

33

Environment

The Lupil system is implemented in Java, to take advantage of Java’s reflection library,
flexible compilation options, and easy deployment across multiple platforms. Java version 8 is
used as this is the first version that allows parameter names to be extracted from constructor
arguments.

Developers should use the Eclipse environment where possible.

‘TODO : CBB: To summarise recommended compiler warning and error settings.
Avoid the use of third party software Iibraries where possible.

7.1 Compatibility

Known cross-platform compatibility issues include:

e Inconsistent font scaling between different environments. For example, the same code
run on a Mac system to produce the GUI (Figure 6.2) produces unreadably small text
on Windows systems.

7.2 Repository

The LuDII project and its associated sub-projects are housed on the GitHub repository https://github
.com/cambolbro/Ludii. Contact the author (cambolbro@gmail.com) for access.

This repository is currently private as it is being developed for initial release, but may
revert to a public repository in future, in keeping with the ERC’s commitment to Open Access
research source materials.

34

https://github\penalty \z@ {}.com/cambolbro/Ludii
https://github\penalty \z@ {}.com/cambolbro/Ludii

7.3 Version Control

Regression testing is important to guarantee that future additions to the Ludeme Library do not
unduly affect existing content. This may be achieved by maintaining a record of deterministic
playouts for each entry in the Game Database, generated by seeding the RNG with a hash code
based on the game’s (unique) name, and storing the moves thus generated. Any change to the
library that makes any known game diverge from its stored playout record will be flagged for
investigation.

Eventually, an appropriate JUnit test should be automatically generated for each new game
entered into the Game Database.

35

Coding Style

All code added to the Ludeme Library — and to LUDII in general — should follow the basic
philosophy outlined below and conform to the specified coding standard and optimisation
guidelines.

8.1 Philosophy

1.
2.

Generality comes first. In any design choice, generality is the top priority.

Simplicity comes second. For any ludeme mechanism added to the Library, simplicity in
the generated grammar is paramount, unless it reduces generality. Note that this refers
to the simplicity of the generated grammar rather than the simplicity of the underlying
code!

Efficiency comes third. In any design choice, efficiency is strongly encouraged unless it
reduces generality or simplicity.

After adding any ludemes to the Library, check the corresponding rules in the generated
grammar. If the resulting grammar is ambiguous, confusing or limits generality, then
restructure those ludemes.

Ludemes should be as general as possible, to maximise reuse. Ludemic descriptions
are used to measure the distance between games, so the more explicit each ludemic
description, and the more reused ludemes are by multiple games, the better.

Do not over-specialise ludemes. For example, do not specify a custom ludeme for a
particular piece such as Chess knight; instead build up the knight behaviour from simpler
ludemes. Otherwise, the specialised piece will act as a self-contained unit and sub-ludemes
within it cannot be overridden to define variant behaviour. Also, it would not then
be possible to measure the distance between this piece’s behaviour and another piece’s
behaviour in any meaningful way by their ludemes.

36

8.2 Coding Standard

1. Each opening bracket should be on a separate line at same indentation as the correspond-
ing closing bracket:

¢

=2 Java 18
for (int 1 = 0; i < n; i++)

{
}

// do something

not:

g’ Java 19

for (int i = 0; i < n; i++) {
// do something
}

2. This includes array initialisations split over multiple lines, e.g.

é Java 20
final int[] fibonacci =

{
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 144, 233, 377,

610, 987, 1597, 2584, 4181, 6765

b

3. Even better, format terms to line up in each column for easier reading and error-checking,
e.g.

j;_% Java 21
final int[] fibonacci =
{ 1, 1, 2, 5 5, 8, 13, 21, 34, 55,
89, 144, 144, 233, 377, 610, 987, 1597, 2584, 4181,
6765
b

4. Make logically grouped lines of code line up where possible, to make inconsistencies stand
out, e.g.:

37

:;:S; Java 22

int row = 03
int column = 0;
int level = 0;

or:

S, 5

=2 Java 23
switch (day)
{
case 0: str += ”January”; break;
case 1: str 4= ”February”; break;
case 2: str 4= "March”; break;
case 3: str 4+= 7 April”; break;
case 4: str += "May”; break;
case b5: str += ”June”; break;
case 6: str += "July”; break;
case T7: str += "August”; break;
case 8: str += "September”; break;
case 9: str += ”October”; break;
case 10: str 4+= ”"November”; break;
case 11: str 4= "December”; break;
deafaut: str 4= 777 break;
}

5. Leave a space after each keyword and between operators, i.e. if (a < b) not if (a<b).

6. However, is is allowed to compress space around operators to save space if necessary,
especially if they are being used in calculations for parameters or array indexing, e.g.

‘s('g Java 24

—_—

int a = array[cell/cols][cell%cols];

or:

:;% Java 25

final boolean okay = onBoard(cell/cols, cell%cols);

7. If compressing space around operators, do so according to operator precedence, e.g.:

:g; Java 26
return first + 2xsecond + 3xthird/fourth — fifthx*sixth;

8. Format ternary conditionals as follows. One line:

38

&

= Java 27
int n = (a<b) ?a: b;

Two lines:

&

=2 Java 28
final int longWindedName = verboseBooleanTest(a, b)
? generate(a) : generate(b);

Three lines:

&

=2 Java 29
final int longWindedName = verboseBooleanTest(a, b)
? generateSomethingElse (a)

generateSomethingElse (b);

That is, line up the operands where possible.

9. Align if/else blocks as follows:

:;% Java 30
if (test)

else

10. Do not leave a space before semicolons, i.e. do this:

&

=> Java 31

=
e

for (int i = 0; i < n; i++)

not this:

%(—{’ Java 32

3

for (int i =0 ; i <n ; i++4)

11. Lines should not exceed 80 characters long. Split long lines as needed, e.g.

39

:;:S; Java 33
public void drawLine3D

(

final Graphics2D g2d,
final double x0, final double y0, final double z0,
final double x1, final double yl, final double =zl

é‘j Java 34

if
(

(length > 100 || height > 100)

&&

(age > 50 || weight > 100)

&&

(hairLength > 50 || shoeSizeheight > 10)
)

12. Scope consistently. If any clause in a if-else test requires brackets, due to having multiple

lines, then scope every clause in that statement with brackets, even single-line clauses,
e.g. do this:

“g; Java 35
if (a < b)
{
return —1;
}
else if (a = b)
{
same = true;
return 0;
}
else
{
return 1;
}
not this:

40

‘g’ Java 36

if (a < b)
return —1;
else if (a = b)

{
same = true;
return 0;

}

else

return 1;

13. Otherwise, do not scope single line clauses in if-else statements with brackets (unless any
of its clauses involve multiple lines). That is, do this:

é‘j Java 37
if (test)
return a;

and this:

é Java 38
if (test)
return a;
else
return b;

not this:

;g; Java 39

if (test)
{
return a;
}
or this:
‘g; Java 40
if (test)
return a;
}
else
{
return b;
}

41

14. Include a header comment for every file in Javadoc format, briefly describing the purpose
of that file’s class and listng the initial author and subsequent authors, e.g.:

}_S:f; Java 41
/%%
* Container for holding game equipment.
* @author cambolbro

*/

15. Include a header comment for every constructor and method in every class in Javadoc
format, e.g.:

‘Sg’ Java 42

-
3

/%

% Constructor.

*/

public Basis(final int dim)

{
}

:g; Java 43

/%
x Draw the item at the specified point.
*/
public void draw
(
final Graphics2D g2d, final Item item, final Point pt
)
{
}

It is not necessary to specify @param comments if the parameters are well named and
self-explanatory.

16. Always describe the return type and any assumptions, side-effects or postconditions in
methods that return a value, e.g.:

‘g/’ Java 44

/%%

% @return String description of item, else null if item is null.
*/

public String extractName(final Item item)

{

42

17.

18.

19.
20.
21.
22.

No other comment is necessary if the @return comment gives a sufficiently complete
description of the function’s operation.

Avoid “magic numbers” in code, e.g. do the following:

é Java 45
for (int i = startAngle; i < endAngle; i++)

{
}

// do something

not:

g‘é’ Java 46
for (int i = 2; i < 5; i++)
{

}

// do something

Comment any block of code that might be confusing, or which might hide a non-obivous
assumption, side-effect, precondition or postcondition that might confuse other team
members. . . or yourself if you need to work on that code again after a couple of years.

Use lowerCamelCase for member variables, parameters and local variables.
Use UpperCamelCase for class names, constants (declared final) and enum constants.
Do not use underscores in variable names, e.g. do not do: _tmp, out_ or var_a.

Separate groups of methods that make up logical sections of code with a dividing line,
up to the 80 character mark:

:g; Java 47
public void draw ()

{
//
}
//
public void read ()
{
//
}

43

8.3 Optimisations

1. Avoid using integer modulus % as it generates a surprising number of bytecode instruc-
tions. Use alternatives where possible, e.g. (n & 1) == 0 to check odd/even parity.

2. Make all classes, member variables, local variables and parameters final where possible.
This increases the likelihood of their being inlined by the HotSpot compiler.

3. Keep speed-critical methods small, i.e. generating 325 bytecode instructions or fewer,' so

they can be inlined by the HotSpot compiler. In general, keep any methods to reasonable
sizes, e.g. 30—40 lines in length, to fit on a single screen for reading.

Thttp://normanmaurer.me/blog/2014/05/15 /Inline-all-the-Things/

44

Conclusion

This document provides an overview of the internal workings of the LUDII general game system,
and provides some tips for correctly and effectively adding code to extend the Ludeme Library.
This documented will be revised as the LUDII system matures.

45

Acknowledgement

This work is part of the Digital Ludeme Project, funded by €2m European Research Council
(ERC) Consolidator Grant 771292, being conducted at Maastricht University over 2018-23.

46

[1]

[11]

[12]

Bibliography

C. Browne, “Modern Techniques for Ancient Games”, IEEE CIG 2018, Maastricht, IEEE
Press, 2018, pp. 490-497.

D. Parlett, The Ozford History of Board Games, Oxford, Oxford Univ. Press, 1999.

A. de Voogt, “Distribution of Mancala board games: A methodological inquiry”, Board
Game Studies, vol. 2, 1999, pp. 104-114.

F. Horn and A. de Voogt, “The development and dispersal of 1’Attaque games”, Board
Game Studies, 2008, pp. 43-52.

A. de Voogt, “Moving into Micronesia: Checkers and Sorry!”, lecture, Board Game Studies
Colloquium XX!, Athens, 2018.

D. Parlett, “What’s a Ludeme?”, Game € Puzzle Design, vol. 2, no. 2, 2016, pp. 83-86.

C. Browne, “A Class Grammar for General Games”, Computers and Games (CG 2016),
Leiden, Springer, LNCS 10068, 2016, pp. 169-184.

Ghosh, D.: DLSs in Action. Manning, Stamford (2011)
J. Bloch, Effective Java, second edition, Addison-Wesley, Boston, 2008.

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis and S. Colton, “A Survey of Monte Carlo Tree Search Methods”,
IEEE Transactions on Computational Intelligence and Al in Games, vol. 4, no. 1, 2012,
pp. 1-43.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, 1. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel and
D. Hassabis, “Mastering the Game of Go with Deep Neural Networks and Tree Search”,
Nature, vol. 529, no. 7587, 2016, pp. 484-489.

T. Raiko and J. Peltonen, “Application of UCT search to the connection games of Hex,
Y, *Star, and Renkula!”, Proc. Finn. Artif. Intell. Conf., Espoo, Finland, 2008, pp. 89-93.

47

Appendix A: Lubpii Class
Grammar Example

The following listing shows the LUDII class grammar generated from an early version of the
Ludeme Library. Rules are grouped by package.

?8 Grammar 8

//
// game

<game> ::= (game <string> [{<metadata>}] <play> <equipment> <rules>)

//
// game.metadata

<metadata> = (metadata (keyword <string>) (text <string>))
//

// game.play

<play> = (play [(players <list<player>>)] [(time <timeType>)])
<timeType> ::= Alternating | Discrete | Real

//

// game.play.player

<player> ::= (player [(index int)] (name <string>))

//

// game.equipment

<equipment> ::= (equipment <list<item>>)

<get> = (get <string>)

<item> = <component> | <container>

//

// game.equipment.component

48

<component>
<card>
<die>
<letter>
>))
<number>
<tile>

<card> | <die> | <letter> | <number> | <tile> | <piece>

(card (label <string>) (colour int) (owner int))

(die (label <string>) (colour int) (owner int))

(letter (label <string>) (colour int) (owner int) (value <string

(number (label <string>) (colour int) (owner int) (value int))
(tile (label <string>) (colour int) (owner int))

// game.equipment.component.piece

<piece> = <ball> | <cross> | <disc> | <chess>

<ball> = (ball <string> (colour int) (owner int))

<cross> = (cross (label <string>) (colour int) (owner int))
<disc> = (disc <string> (colour int) (owner int))

//

// game.equipment.component.piece.chess

<chess> = <bishop> | <king> | <knight> | <pawn> | <queen> | <rook>
<bishop> = (bishop (label <string>) (colour int) (owner int))
<king> = (king (label <string>) (colour int) (owner int))
<knight> = (knight (label <string>) (colour int) (owner int))
<pawn> = (pawn (label <string>) (colour int) (owner int))

<queen> = (queen (label <string>) (colour int) (owner int))

<rook> = (rook (label <string>) (colour int) (owner int))

//

// game.equipment.container

<container> = <hand> | <board>
<hand> = (hand <string> (owner int) (aum int))
//

// game.equipment.container.board

<board>

//

(board <string> <basis> [{<modify>}])

// game.equipment.container.basis

<basis> = <hexHex> | <rect> | <wheel>

<hexHex> = (hexHex (dim int))

<rect> = (rect (rows int) (cols int)) | <square>

<square> = (square (dim int))

<wheel> = (wheel (spokes int)) | (wheel (spokes {int}) (aligned boolean))
// - -

// game.equipment.container.board.modify

49

<modify> <cut> | <join> | <remove>

<cut> = (cut (celld int) (cellB int))

<join> = (join (cellA int) (cellB int))

<remove> = (remove (cell int))

// e it

// game.rules

<rules> = (rules [<list<start>>] <moves> <list<end>>)

//

// game.rules.start

<start> = <place>

<place> ::= (place [(who <roleType>)] [(item <string>)] [(count int)] (target

<string>3 [(posn int)]1)

[[=mmmmm e - P

// game.rules.moves

<moves> ::= (moves <list<action>>)

<list<action>> ::= <fromTo> | <moves> | <or> | <to>

<fromTo> = (fromTo [(container <int>)] (sitesFrom <sites>) (sitesTo <sites>)
)

<or> ::= (or <list<action>> <list<action>>)

<to> (to [(container <int>)] (component <int>) (sites <sites>))
<action> ::= Action

/7 —

// game.rules.end

<end> = (end <boolean> <result>)

<result> = (result <int> <resultType>)

<resultType> ::= Win | Loss | Draw | Tie | Abort

// - ittt

// game.functions.ints

<int> = int | <get> | <add> | <indexOf>

<add> = (add <int> <int>)

<indexO0f> = (index0f <string>) | (index0f <roleType>)
//

// game.functions.booleans

<boolean> boolean | <and> | <line> | <not> | <occupied> | <or>

<and> (and <boolean> <boolean>)

<line> ::= (line [(cont <int>)] [(role <roleType>)] [(dirn <dirnType>)] (
length int))

50

<not>
<occupied>
<or>

(not <boolean>)

= (occupied [(cont <int>)] (site <int>))

(or <boolean> <boolean>)

//
// game.types

<string>
<dirnType>

<roleType>

= String

None | Any | A1l | In | Out | Along | Around | CW | CCW |
Vert | Horz | Orth | Diag | Over | Under | N | E | S | W |

NE | SE| NW | SW | NNE | ENE | SSE | ESE | NNW | WNW | SSW |
WSWw | U | D | UN | UE| US| UW | DN | DE | DS | DW | UNE |
USE | UNW | USW | DNE | DSE | DNW | DSW

None | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | Any | A1l |
Mover | NonMover | Opposite | Next | Prev | 0dd | Even |
Empty | Own | Enemy | Ally | NonAlly | Partner | NonPartner

o1

	Overview
	Basic Principles
	Scope
	Game Database
	Ludemes
	Mathematical Profile

	Architecture

	Common Module
	Annotations

	Library Module
	API
	Game State
	The State Class
	The ItemStateContainer Class
	Supported Game Types

	Graph Class
	Ludeme Class Hierarchy

	Grammar Module
	Class Grammar
	Syntax
	Generation
	Symbols
	Symbol Return Types
	Function and Constant Classes

	Algorithm
	Game Descriptions
	Instantiation
	Formatting Guidelines
	Optional Parameters
	Explicit Parameter Names
	Default Values
	Library Structure
	Abstract Classes
	Inner Classes
	Collections

	AI Module
	Default AI Agents
	Lightweight Local Features

	Player Module
	Graphical User Interface (GUI)
	Command Line Interface (CLI)

	Environment
	Compatibility
	Repository
	Version Control

	Coding Style
	Philosophy
	Coding Standard
	Optimisations

	Conclusion

