The Digital Ludeme Project: Modelling the Evolution of Traditional Games

Cameron Browne Walter Crist

Game AI & Search Maastricht University

Mapping Antiquity
Fribourg University
17/1/2020

Context

Games are ubiquitous

- All humans play games
- All human cultures have their own games
- Games reflect the culture(s) in which they're played

Games offer a window of insight into cultural past

Ancient games rarely recorded

- Passed on by oral tradition
- Huge variety today
- Very little knowledge

Cultural Contact

Games are cultural artefacts

- Touchpoints between cultures
- Evidence of contact

e.g. Patolli and Pachisi

Patolli Mexico (200BC-1200AD)

Maastricht University

Pachisi India (from 600-1600 AD)

Cultural Contact

Tyler (1879)

• Evidence of early pre-Columbian contact

Erasmus (1950)

• Coincidence, "Limitation of Possibilities"

E. B. Tyler (1832–1917)

Pachisi India (from 600-1600 AD)

Games in Human History

Archaeological evidence of games:

- Found worldwide
- Throughout recorded history

Provides clues:

- Reconstruction is a subjective endeavour
- Highly unreliable

	Ancient					Early	Modern
40	00вс	3000вс	2000вс	1000вс	0 ad	1000ad	2000ad
Recorded Human History							

Digital Ludeme Project

Five-year research project

- Funded by the ERC (€2m)
- Maastricht University

Computational study of the world's traditional games

Games as mathematical entities

- Evidence based
- Quantitative approach

Objectives

1. Model

Full range of traditional strategy games in a single playable digital database

2. Reconstruct

Missing knowledge about ancient games more reliably

3. Map

Spread of games throughout history

Aim: To improve our understanding of traditional games using available evidence and modern AI techniques

Team

Cameron Browne (PI)

Game AI (technical lead)

Eric Piette (Postdoctoral Researcher)

Game AI (game engine development)

Matthew Stephenson (Postdoctoral Researcher)

Game AI (GUI, networking, data mining)

Dennis Soemers (PhD Candidate)

Game AI (feature learning)

Walter Crist (Postdoctoral Researcher)

- Anthropologist/archaeologist (dispersal of games)
- Middle East and Mediterranean specialist

Scope

Traditional games of strategy

Traditional

- No proprietary owner
- Some historical longevity
- Connection with local culture

XII Scripta board from Laodicaea, Turkey

Strategy

- Reward mental skill
- Good decisions beat bad decisions
 e.g. board, tile, card, dice, etc.

Model the 1,000 most "important" traditional games

- Documented, can be located and dated
- Impact on evolutionary record

Timeline

Games as Cultural Heritage

Tangible cultural heritage

Physical evidence
 e.g. boards, pieces, components, etc.

Intangible cultural heritage

- Rules
- Social/cultural context
- Restore and preserve

What is the available evidence?

Ancient Egypt

Earliest known games

Mehen (c.3100BC)

- No rules
- No clues to how it was played

Senet (c.3000BC)

- Hundreds of sets found
- No rules
- Hieroglyphic art

Senet

From hieroglyphs

- Two players
- Some starting positions

From evidence

- Two piece types
- Special symbols on board
 - Entry points? Exit points?

About a dozen plausible reconstructions

First Known Rules

Sumerian cuneiform tablets

• Mesopotamia, 177_{BC}

British Museum (top)

• One of 130,000

Parisian (bottom)

- Destroyed 1940s
- Photo survived

First Known Rules

Irving Finkel (1990) Curator, British Museum

Royal Game of Ur

Played in Mesopotamia

• c.2600BC

Tablets written

• c.177_{BC}

Reconstruction by Irving

1990

Still some questions

- Same game? Probably
- Which track?

Transcription Errors

Mu Torere (New Zealand, 18thC)

- Full knowledge
- Living players

Move a piece of your colour adjacent to an enemy piece to the adjacent empty point.

Some accounts simplify this:

Move a piece of your colour to the adjacent empty point.

Win on first move!

Invented Traditions

Birrguu Matya (Australian Aboriginal, late 19thC)

Marketed as traditional game

Identical to Small Merels

Is a clear outlier

 No other strategy board games in this culture

Meggitt (1958)

- Afghani camel herders
- German missionary

Invented Traditions

Surakarta

Named after traditional Javanese capital

National game of Java?

But...

 Can't find anyone from Java who knows it!

 Game invented for Ravensburger 1972 edition?

Approach

How to handle this incomplete, unreliable evidence?

- 1. Quantify where possible
- 2. Encode in single consistent format
- 3. Establish historical/cultural context
- 4. Find relationships within data

Game "memes" (Borvo, 1975)

- Units of game-related information
- Building blocks (DNA) of games
- Encapsulate key concepts (in consistent format)

```
e.g. (tiling square)

(size 3)
```


Game "memes"

- Units of game-related information
- Building blocks (DNA) of games
- Encapsulate key concepts

```
e.g. (tiling square)

(size 3)

(board
  (tiling square)
  (size 3)
)
```

Game "memes"

- Units of game-related information
- Building blocks (DNA) of games
- Encapsulate key concepts

```
e.g. (tiling square)
  (size 3)
  (board
    (tiling square)
    (size 3)
  )
```

```
(game "?"
  (players White Black)
  (board
      (tiling square)
      (size 3)
  )
  (move (add Own Empty))
  (end (win All (in-a-row 3)))
)
```

Game "memes"

- Units of game-related information
- Building blocks (DNA) of games
- Encapsulate key concepts

```
e.g. (tiling square)

(size 3)

(board
  (tiling square)
  (size 3)
)
```

```
(game "Tic-Tac-Toe"
  (players White Black)
  (board
     (tiling square)
     (size 3)
  )
  (move (add Own Empty))
  (end (win All (in-a-row 3)))
)
```

Stanford GDL

Academic standard15 years

Programmer's view

- Low level instructions
- Not high level concepts

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(\leq (column ?n ?x) (true (cell 1 ?n ?x))
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\le open (true (cell ?m ?n b))) (\le (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

```
(game "Tic-Tac-Toe"
  (players White Black)
  (board
     (tiling square)
     (size 3)
  )
  (move (add Own Empty))
  (end (win All (in-a-row 3)))
)
```

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))</pre>
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(\leq (column ?n ?x) (true (cell 1 ?n ?x))
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\le open (true (cell ?m ?n b))) (\le (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

```
(game "Tic-Tac-Toe"
  (players White Black)
  (board
     (tiling square)
     (size 7)
  )
  (move (add Own Empty))
  (end (win All (in-a-row 3)))
)
```

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))</pre>
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(\leq (column ?n ?x) (true (cell 1 ?n ?x))
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\le open (true (cell ?m ?n b))) (\le (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

```
(game "Tic-Tac-Toe"
  (players White Black)
  (board
     (tiling hexagonal)
     (size 7)
  )
  (move (add Own Empty))
  (end (win All (in-a-row 3)))
)
```

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))</pre>
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(\leq (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\le open (true (cell ?m ?n b))) (\le (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```



```
(game "Tic-Tac-Toe"
  (players White Black)
  (board
     (tiling hexagonal)
     (size 7)
  )
  (move (add Own Empty))
  (end (win All (no-moves)))
)
```

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))</pre>
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(\leq (column ?n ?x) (true (cell 1 ?n ?x))
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(\leq (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\le open (true (cell ?m ?n b))) (\le (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```



```
(game "Tic-Tac-Toe"
  (players White Black)
  (board
      (tiling hexagonal)
      (size 7)
  )
  (move (add Own Empty))
  (end (win All (no-moves)))
)
```

Designer's view

- Encapsulates high level concepts
- Full range of games

```
Maastricht University
```

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))</pre>
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(\leq (column ?n ?x) (true (cell 1 ?n ?x))
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\le open (true (cell ?m ?n b))) (\le (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

How Many Ludemes?

Do we have to implement them all?

Most of them

About 400 so far

- About 600 expected
- Not actually that many
- High reuse among games

Very achievable!

System is fully extensible

Just add more as needed

How To Improve Reconstructions?

Search for alternative rule sets that maximise:

1. Historical Authenticity

2. Game Quality

How To Improve Reconstructions?

Search for alternative rule sets that maximise:

1. Historical Authenticity

- Rules match: location, period, cultural context
- Based on historical data

2. Game Quality

- Run self-play trials between AI agents
- Look for obvious flaws
- Look for indications of quality

Obvious Flaws

Basic indicators of bad games:

1. Bias

All players should have chance of winning

2. Drawishness

Most games should produce a result, not a draw

3. Game Length

Games shouldn't be too short or too long

Easy to detect, can eliminate to narrow down choices

Ludii

General game system

• Playing, analysing, designing, reconstructing

Early stages

• ~200 games

Beta version available

http://ludii.games

Official release

- Soon!
- January/February

Example: Hnefatafl

Hnefatafl "Viking Chess"

- Scandinavia (c.800AD)
- No rules found

Linnaeus (1732)

• Saw Tablut, transcribed rules (in Latin)

Smith (1811)

Translated into English

Murray (1913) History of Chess

• Published rules, became de facto

Carl Linnaeus (1707-1778)

Example: Hnefatafl

BUT...

Smith made a bad translation of the king capture rule

A. "likewise the king"

- Flanked
- Easy to capture

B. "except the king"

- Surrounded
- Hard to capture

[DEMO]

Upper Bound

Taikyoku Shogi

- c.1600
- At least two sets exist
- Has actually been played

Equipment

- 36x36 board
- 402 pieces each
- > 200 different piece types with distinct moves

Complexity

- ~800 legal moves per turn
- ~1,000 turns per game
- Game tree > $10^{1,000}$ (Go is ~ 10^{360})

Other 0 Sympos. 1 Sympos. 2 Conference **Exhibition** Ludii U ➤ GGP system ➤ Proceedings ➤ Proceedings ➤ Proceedings ➤ Catalogue ► 45+ papers **▶** Ludemes ➤ Interactive Maps ▶ 3 books ➤ Games + Reconstructions ➤ Public lectures ▶ 2 PhD theses = Family Tree/Network U ➤ Manuals ➤ Artefacts ▶ Patents? **ASR** = Ancestral State Reconstruction ➤ Web site ▶ Displays = Missing Links ➤ Al methods

Cultural Transmission Theory

Games

- Vehicles for transmission of ideas
- Transferred from person to person

Ludemes

- Packages which are transmitted
- DNA of games

Ludemic Distance

 Number of steps required to change one game into another

Evolution of Mesoamerican board games (Depaulis 2018)

Ludemic Distance

Genotypic Distance

Form - Measured directly from game description:

- Edit distance between rule sets
- Geometric distance between equipment
- Game tree and state space complexity
- Types of actions
- etc.

Phenotypic Distance

Function - Trends that emerge during play:

- Balance
- Drama
- Tension
- Uncertainty
- Strategic depth
- etc.

Computational Phylogenetics

Ludemic distance:

In lieu of actual genetic distance

1. Family Trees

Key game families

2. Ancestral State Reconstruction

 Identify likely traits in ancestors

3. Missing Links

 Games that explain gaps in the evolutionary record?

Phlyogenetic analysis of Austronesian societies Currie (2010) *Nature*

Maastricht University

Dispersal of Mathematical Ideas?

Chart the spread of:

games

underlying mathematical concepts

throughout history

Tag each ludeme with mathematical concepts

Gives mathematical profile for each game

All games embody underlying mathematical concepts!

GeaCron

Geo-temporal database

Project partners

Yearly maps:

- Last 5,000 years
- 2,000 cultures

Viking route from Norway to Paris (845AD)

IN: GPS + date

OUT: Civilisation + nation + landmarks + events + routes

Spread of Games

Chart spread of games/ludemes throughout human history

Correlate with:

- Trade routes
- Explorer routes
- Military camp'ns
- Crusades
- Diasporas
- etc.

GeaCron have provided 275 known routes

Colonial trade routes (1890s)

Silk Road Trade Routes

Very important in the history of games

- Fertile crescent:
 - Egypt
 - Sumer
- Middle East
- India
- Asia

Data Gathering

Sources:

- Artefacts
- Rules texts
- Artwork depictions
- Ethnography
- Historical accounts
- Field trips

Walter documenting a **58 Holes** board (Azerbaijan)

Two men playing **Bao** (Malawi)

Data to be Gathered

Data per piece of evidence:

- Name
- Location
- Date
- Game rules
- Social status
- Gender of players
- Age of players
- Spaces in which people played
- Source
- Confidence

Ludus Latrunculorum board (Sabratha)

Data to be Gathered

Data per game:

- Name
- Descriptions of variants and reconstructions (for *.lud files)
- Period
- Region
- Cross-reference known evidence
- Source(s)
- Confidence (incorporates evidential confidence)

Historical/cultural profile per game

Also for component ludemes

Evidence Maps

Game Database:

- Interactive plots
- Evidence per game
- Colour coded by date

Data points:

- Rules
- Where game was played
- When game was played

Goal:

- At least one d.p. per game
- All 1,000 games

Open access

Maastricht University

Data Points

Each data point is:

- Artefact
- Artwork
- Historical text
- Literary allusion
- Ethnographic description

Data points can be:

- Point (GPS coordinate)
- Region

Sources listed

Confidence given as %

Digital Archaeoludology

Traditional game studies:

- Wealth of historical analysis
- Little mathematical analysis

Modern game Al studies:

- Huge surge in recent research
- Maths based, no historical context

Seek to bridge this gap

• Single unified research field

DAL: Use of modern computational techniques to harness the available evidence and improve our understanding of ancient games

Conclusion

Thank You!

Questions?

Digital Ludeme

