
  QMUL Game AI Research Group Seminar  
   

    General Board Geometry

Cameron Browne 
Digital Ludeme Project 
Maastricht University (DKE) 

Queen Mary University of London 
19/8/2020



Overview

Context: Ludii 
 
Game boards as graphs 
• Board geometry 
 
Design process 
 
Graph functions for  
   game boards 

Properties: 
• Steps, walks, radials, … 
• Coordinates, phases, … 

• Lots of examples!



Digital Ludeme Project

Five-year research project  
• Funded by the ERC (€2m) 
• Maastricht University 

Aim is to digitally 
• Model 
• Reconstruct 
• Map 
world’s traditional games 

http://ludeme.eu 



Scope

1,000 most important games 
• Last 4,500 years 
• Also modern games 

Single consistent format 

How to support full range of  
  games and board types?



Ludemes

Ludeme = game “meme”: 
• Unit of game-related information 
• Building block (DNA) of games 
• Encapsulates key game concept

(game “?” 
  (players 2) 
  (equipment { 
     (board (square 3)) 
     (piece “Disc”) })  
  (rules 
     (play (move Add (to (sites Empty)))) 
     (end (if (is Line 3) 
          (result Mover Win))) 
  ) 
) 



Ludemes

(game “Tic-Tac-Toe” 
  (players 2) 
  (equipment { 
     (board (square 3)) 
     (piece “Disc”) })  
  (rules 
     (play (move Add (to (sites Empty)))) 
     (end (if (is Line 3) 
          (result Mover Win))) 
  ) 
) 

Ludeme = game “meme”: 
• Unit of game-related information 
• Building block (DNA) of games 
• Encapsulates key game concept



Ludemes

Simplify complex game descriptions 
• e.g. Havannah

(game "Havannah"   
   (players 2)   
   (equipment {  
      (board (hex 8))  
      (piece “Ball”) })   
   (rules  
      (play (move Add (to (sites Empty)))) 
      (end (if (or { 
           (is Loop)   
           (is Connected 2 Corners) 
           (is Connected 3 SidesNoCorners)  
         }) 
         (result Mover Win)) 
      ) 
   ) 
) 



Ludii

General game system: 
• Modelling, playing, analysing, generating, reconstructing, … 
• Each ludeme is Java class 
• 250+ games implemented 

Public release v1.0.0 
• July 2020 
• http://ludii.games 



Team

Text Cameron Browne (PI) 
• Technical lead 

Eric Piette (Postdoctoral Researcher) 
• Game logic 

Matthew Stephenson (Postdoctoral Researcher) 
• GUI + networking 

Dennis Soemers (PhD Candidate) 
• AI + feature learning 

Walter Crist (Postdoctoral Researcher) 
• Anthropologist/archaeologist (dispersal of games)

Many hours spent on board geometry…



Boards as Graphs

C. Browne (2005) Connection Games  
• Study of 200+ connection games 

Games as graphs 
• Vertices = playable sites 
• Edges = adjacency 

Strips games down to reveal  
  underlying structure



Games as Graphs

e.g. Map Hex 



Games as Graphs

s

t

u

v



Games as Graphs

s

t

u v



Games as Graphs

Provides insight  
Convenient 
Consistent  

s

t

u v



Basic Graph Theory

A graph G is a set of vertices and edges G = {V, E}   

A vertex Vn is a point in Euclidean space 

An edge En is defined by two vertices (end points)  

A face Fn is a closed region bounded by edges 

u

v

5 faces                         16 faces                   0 faces         



Duals

The dual of a graph G is the graph 
that has a vertex for each face of G, 
with edges between vertices of  
faces that share an edge 

The dual includes a vertex for the  
outer region as an infinite face 

The weak dual of a graph G is the 
dual whose vertices correspond 
to bounded faces only



Weak Dual

Useful for defining:  
• Where pieces go (playable sites) 
• How they can move (adjacency)



Weak Dual

Also useful for 
generating 
exotic boards  
from simple  
tilings 

Very powerful!



Ludii Board Representation

Initially maintained two separate graphs: 

1. Weak dual of actual board 
    • For game logic  
       (if played on the cells) 

2. Graph of actual board 
    • For drawing purposes 
    • Also for game logic  
       (if played on the intersections) 



Issues 

Duplication 
Often just needed one graph 

Size Confusion 
Same board is: 
• 3x3 if played on the cells 
• 4x4 if played on the intersections   

Ambiguity 
Dual of the square grid is also a  
square grid – which to use? 
e.g. Mancala (more hours…)



Issues
Games can be played on: 
• Cells 
• Vertices 
• Edges 
• Any combination of these 
   e.g. Conhex 

Two element types?  
• Spread across both graphs 

Three element types? 
• No 

Persisted about a year 
• Not a good general solution 



Solution

Just use one graph (thanks Matthew!) 

Single graph with playable sites: 
• Vertices 
• Edges 
• Cells  

Use any combination of sites 
at any time 



Implementation
Use “game design” term

Will describe generating graph function shortly



Naming Convention

Policy to use “game design” terms:  
• Unless confusing 
• If give better game descriptions 

e.g. Orthogonal  
       Game design interpretation: Cells that share an edge



Orthogonality

Orthogonal  
Mathematical definition: Two lines that meet at right angles 

Square grid:       90o  
Hexagonal grid:  60o  
Triangular grid:  30o 



Diagonality

Diagonal   
Game design: Closest non-orthogonal cell through each vertex 

Can be non-adjacent, e.g. hexagonal



Diagonality

Diagonal  
Mathematical definition: Line segment between two vertices 
that do not define an edge 

“Mathematical” diagonals  
occur within the face 

“Game design”diagonals  
project outwards from cells 

Triangular grid:  
• 3 sides hence no true diagonals!



Alternative Naming Schemes

Orthogonal => “Axial”    = lines along major axes 
Diagonal     => “Angled” = other lines 

Axial Angled



Alternative Naming Schemes

Orthogonal => “Axial”    = lines along major axes 
Diagonal     => “Angled” = other lines 

Axial

Axial

Angled

Angled



Types of “Diagonals”

Different types of “diagonals”: 

1. Connected e.g. square grid 
    • Vertex-connected but not 
        edge-connected 

2. Disconnected e.g. hex grid 
    • Neither vertex connected nor 
        edge-connected  

    No term in graph theory 
    describes this distinction! 

Call them “adjacent” and “non-adjacent”



Diagonal Connectivity

Our Definitions 

• Orthogonal: Share an edge 

• Diagonal: Cells in line through a vertex 

i.e. for each vertex Vn of each cell C, 
project a line from midpoint Cm through Vn 
and find the closest cell whose midpoint is 
approximately coincident 

• Adjacent: Share at least one vertex 

• Non-adjacent: No shared vertex 

• Neighbour: Any orthogonal or diagonal



Off-Diagonals

Relations on the triangular grid: 
• Orthogonal 
• Diagonal 
• ? 



Off-Diagonals

Relations on the triangular grid: 
• Orthogonal 
• Diagonal 
• Off-diagonal 

Off-diagonal : those nbors that  
share a vertex but not an edge  
and are not true diagonals 

Form of “secondary” diagonal 

Important for lines of play 
on the triangular grid  
(more later)



Directions

Each site has a reference point (x,y,z): 
• Vertex: Location 
• Edge:    Midpoint 
• Cell:     Centroid 

Defines directions between sites: 

1. Absolute 
    a) Specific 
        i)   Compass    N, E, S, W, NE, NNE, … 
        ii)  Rotational In, Out, CW, CCW, … 
        iii) Spatial      U, D, UN, UNE, DN, DNE, … 
    b) Relational      Orthogonal, Diagonal, Off, Adjacent, … 

2. Relative (to player and/or component) 
    • F, B, L, R, Forward, Leftward, Leftward, Rightward, …



Steps and Walks

Generate steps to  
adjacent elements 

A walk is a set of steps 
from a site in a direction 

e.g. Knight walk: 

    { {F F R} {F F L} } 

Maps to any topology 
• Can create ambiguity

!!

1-1

0

1-1
2

1

-2

-1

2

1

0

-1

-2

1

3

-1

3

0

1

4

-1

4

1

5

-1

5

2

5

-2

5

0

1

6

-1

6

1

3

-1

3



Features

MCTS agent biases playouts according to learnt features: 
• Geometric piece patterns defined by walks 

e.g. “Bridge completion” pattern for connection games 

Maps easily between topologies

+

+



Radials

Radials are lines of play defined by regular step patterns 

• Not necessarily  
   contiguous 

• Can branch 

1-1

1

-1

1-1

1

-1

1-1

1-1

1

-1

1-1

1

-1

1-1



Radials

Radial generate(site S0, dirn D0) 
{ 
    for (each nbor SN  from S0 that satisfies D0) 
        S = S0 
        while (site != null) 
        { 
             store S 
             D = SN – S      <= current local direction 
             find nbor(s) SN from S that satisfies D0    
                    and minimises deviation from D      <= can branch 

      S = SN 
       } 
} 
      



Triangular Radials

Triangular grid is a bastard problem 

Steps within slides can alternate 

1. Bishops in Triangular Chess slide 
    diagonally alternating:  
    • Diag, Orth, Diag, Orth, … 

2. Bishops in Tri Chess slide 
    orthogonally alternating:  
    • Orth, Diag, Orth, Diag, … 



Triangular Radials

…while some slide regularly: 

3. Rooks in Triangular Chess  
    slide off-diagonally:  
    • Off, Off, Off, Off, … 

Triangular grid is usually the worst case scenario 

For any new design idea, first question to ask:  
   
    “Will it work on the triangular grid?”



Reality Check

Graph representation: 
• Vertices 
• Edges 
• Cells 

Relations: 
• Directions 
• Steps 
• Walks 
• Radials  
• … 

Terhuchu



Reality Check

Graph representation: 
• Vertices 
• Edges 
• Cells 

Relations: 
• Directions 
• Steps 
• Walks 
• Radials  
• … 

BUT 
• Required ~50 ludeme “board” classes 
• Specialised for particular boards

Terhuchu



Overspecialisation

Any change:  
• Different base tiling? e.g. hexagonal 
• Different arm shape? 
• Additional sites? 
• Truncated corners? 
• Different connectivity? 

All would require ludemes   
to be updated or added 

      Violates principle of generality

Terhuchu



Graph Functions

Solution: Graph functions! 

1. Generators  
    Define simple graphs as tilings in certain shapes 

2. Operators  
    Combine graphs in simple ways 

Can define boards of arbitrary complexity 
• More flexible, more general 
• More in keeping with the “ludemic” approach 

Implemented in June 2020  
• Just before public Ludii v1.0.0 release



Graph Generators: Tilings

Regular 
• Square 
• Hexagonal 
• Triangular 

Semi-Regular 
• 4.8.8 
• 4.6.12 
• 3.4.6.4 
• 3.6.3.6 
• 3.12.12 
• 3.3.3.3.6 
• 3.3.3.4.4 
• 3.3.4.3.4 

Custom 
• Brick 
• Celtic 
• Morris 
• Quadhex 



Regular Tilings

(square 5) 
(hex 5) 
(tri 5) 

Number of cells per side 
• Add 1 if “use:Vertex” 



Semi-Regular Tilings

(tiling T488 3) 
(tiling T4612 3) 
(tiling T3464 3) 
(tiling T3636 3) 
(tiling T31212 3) 
(tiling T33336 3) 
(tiling T33344 3) 
(tiling T33434 3) 



Semi-Regular Generation

(tiling T3464 2) 

Generation based on: 

• Major  Reference elements 
               e.g. hexagons on hex grid           

• Minor  Satellite elements 
               e.g. squares and triangles  

Size refers to major elements: 
  
    “3.4.6.4 board size 2”



Custom Tilings

(morris 3) 
(brick 4) 
(quadhex 4) 
(celtic 3 4) 



Graph Generators: Shapes
(shape 5) 
(wedge 4) 
(spiral turns:5 sites:88) 
(circle 8) 
(repeat 2 2 …) 



Repeat Shape
(repeat 4 4 
    step:{{4.330 -1.5} {-0.866 4.5}} 
    { 
        (poly { 
            {0 0}  
            {1.732 1} {1.732 2}  
            {2.598 2.5} {2.598 0.5}  
            {0.866 -0.5} {0.866 -1.5}  
            {0 -2} 
        }) 
        …  
    } 
)  



Limping Boards

“Limping” board:  
• Shape modifier 
• Sides of {n, n+1, n, n+1, …} 

e.g. 

(square Limping 3) 
(hex Limping 4) 

Useful for projective boards 
e.g. Projex



Custom Shapes

Celtic tiling clipped by polygon 

(celtic 
   (poly { 
       {3 0} {3 6} {0 6} {0 9}  
       {3 9} {3 13} {6 13} {6 9}  
       {10 9} {10 6} {6 6} {6 0} 
   }) 
)



Graph Operators

Operators 
• Take one or more graphs 
• Return a modified or combined graph 

Based on Constructive Solid Geometry (CSG)  
• Build complex geometric   
   forms from simple  
   primitives and  
   operations 



Graph Operators

Example 

(dual  
    (subdivide  
        (tiling T3464 2) 
    ) 
) 

Weird but interesting! 

Few seconds to define



Graph Operators
Add                 Add elements 
Clip                 Clip off elements outside a shape 
Complete        Add edges between all vertex pairs 
Dual                Take the weak dual of the graph 
Hole                Remove some interior cells  
Intersect         Keep elements shared by two or more graphs 
Keep               Discard everything outside the specified region 
Layers             Make Z layers for 3D boards 
MakeFaces       Create all simple faces 
Merge              Combine graphs and merge coincident elements 
Recoordinate   Regenerate coordinate labels 
Remove           Remove specified elements 
Renumber       Renumber elements from bottom left 
Rotate             Rotate elements 
Scale               Scale elements 
Shift                Shift elements 
Skew               Skew elements 
SplitCrossings  Create vertices wherever edges cross 
Subdivide        Insert vertices and edges to subdivide cells 
Trim                Remove orphaned edges and cells 
Union              Combine graphs without merging coincident elements



Using the Geometry
(game "X" 
   (players 2) 
   (equipment { 
      (board   
          tiling T33336 3)) 
      (piece “Disc") }) 
   (rules 
      (play (move Add (to  
              (sites Empty)))) 
      (end (if (is Line 4)  
         (result Mover Win))) 
   ) 
) 



Using the Geometry
(game "X" 
   (players 2) 
   (equipment { 
      (board (dual  
          tiling T33336 3))) 
      (piece “Disc") }) 
   (rules 
      (play (move Add (to  
              (sites Empty)))) 
      (end (if (is Line 4)  
         (result Mover Win))) 
   ) 
) 

All cells equal size 

Rosette patterns



Using the Geometry
(game "X" 
   (players 2) 
   (equipment { 
      (board (dual  
          tiling T33336 3))) 
      (piece “Disc") }) 
   (rules 
      (play (move Add (to  
              (sites Empty)))) 
      (end (if (is Line 4)  
         (result Mover Win))) 
   ) 
) 



Using the Geometry
(game "X" 
   (players 2) 
   (equipment { 
      (board (dual  
          tiling T33336 3))) 
      (piece “Disc") }) 
   (rules 
      (play (move Add (to  
              (sites Empty)))) 
      (end (if (is Line 4 
              Orthogonal)  
         (result Mover Win))) 
   ) 
) 

Incorporates geometry  
into the rules of the game



Dual Nature

(tiling T33434 4) 

What does dual  
look like? 



Dual Nature

(dual (tiling T33434 3)) 

Cairo tiling! 

Nice game board



Conhex Tiling
(square 12) 



Conhex Tiling
(square 12) 
    diagonals:Concentric) 



Conhex Tiling
(rotate 45  
    (square 12  
        diagonals:Concentric) 
) 



Conhex Tiling
(rotate 45  
    (dual (square 12  
        diagonals:Concentric)) 
) 



Conhex Tiling
(keep 
    (rotate 45  
    (dual (square 12  
         diagonals:Concentric))) 
    (poly { {2 2} {2 10}  
         {10 10} {10 2} }) 
) 

Conhex board: 

Is trivalent!



Quadhex Board

The “quad hex” board 
• Quadrilateral tiling 
• Hexagonal shape 

e.g. (quadhex 4) 

Three-player Chess: 



Quadhex Board

(quadhex 4 thirds:true) 

Three-player  
Chinese Chess: 



Quadhex Board

(quadhex 8 thirds:true) 

Easy parameterisation 



Rhombitrihexahedral Dual Progression

Rhombitrihexahedral tiling 
• Semi-regular 3.4.6.4 
• Kensington board 

(tiling T3464 2) 



Rhombitrihexahedral Dual Progression

(dual  
   (tiling T3464 2) 
) 

Quadrilaterals in 
a triangular basis



Rhombitrihexahedral Dual Progression

(dual 
  (dual 
     (tiling T3464 2) 
  )      
) 

…back to 3.4.6.4



Rhombitrihexahedral Dual Progression

(dual 
  (dual 
    (dual 
       (tiling T3464 2) 
    ) 
  )      
)



Rhombitrihexahedral Dual Progression

(dual 
  (dual 
    (dual 
      (dual 
        (tiling T3464 2) 
      ) 
    )   
  )      
)



Rhombitrihexahedral Dual Progression

(dual 
  (dual 
    (dual 
      (dual 
        (dual 
          (tiling T3464 2) 
        ) 
      ) 
    ) 
  )      
)



Rhombitrihexahedral Dual Progression

(dual 
  (dual 
    (dual 
      (dual 
        (dual  
           (dual 
             (tiling T3464 2) 
           ) 
         ) 
      ) 
    ) 
  )      
) 



Rhombitrihexahedral Subdivision

(tiling T3464 2) 



Rhombitrihexahedral Subdivision

(subdivide  
   (tiling T3464 2) min:6 
) 



Rhombitrihexahedral Subdivision

(dual  
   (subdivide  
      (tiling T3464 2) 
      min:6  
   ) 
) 



Rhombitrihexahedral Subdivision

(subdivide  
   (dual  
     (subdivide  
        (tiling T3464 2) 
        min:6 
      )  
   ) 
) 

Subdivision increases 
the number of  
cells again



Rhombitrihexahedral Subdivision

(dual  
  (subdivide 
    (dual  
      (subdivide  
        (tiling T3464 2) 
        min:6 
      ) 
    )  
  ) 
) 



Terhuchu

Tehuchu board, old format: 



Terhuchu

Terhuchu board, new format: 

(merge { 
    (shift 2 2 (square 5 diagonals:Alternating)) 
    (shift 2 0 (wedge 3)) 
    (shift 5 3 (rotate 90 (wedge 3))) 
    (shift 2 6 (rotate 180 (wedge 3))) 
    (shift -1 3 (rotate 270 (wedge 3))) 
    (shift 0.65 1.15 (scale 0.5  
         (rotate -45 (wedge 3)))) 
    (shift 5.35 1.15 (scale 0.5  
         (rotate 45 (wedge 3)))) 
    (shift 5.35 5.85 (scale 0.5  
         (rotate 135 (wedge 3)))) 
    (shift 0.65 5.85 (scale 0.5  
         (rotate -135 (wedge 3)))) 
    } 
) 

Less succinct but more general (square + wedges)



Custom Boards

1. Puzzles 
2. Game of Surakarta 

(surakartaBoard (square 6)) 
(surakartaBoard (tri 8)) 
(surakartaBoard (square 36)) 



Graphics Metadata

Hints for drawing certain board types: 

Plain spiral: 

    (spiral turns:5 sites:88) 

Decorate: 

    (metadata 
       (graphics {(board Style Spiral)}) 
    ) 



Graphics Metadata

(graphics {(board Style Mancala)}) 

(graphics { 
   (board Style backgammon) 
   (stackType Backgammon) 
}) 

(graphics { 
   (player Colour Shared  
      (colour 102 61 20)) 
   (no Board) 
})  



Graphics Metadata

Within game description (X.lud): 

(game “X” 
   // Game logic 
) 
(metadata 
   (graphics 
      // graphics hints 
   ) 
) 

Clear separation between game 
logic and graphics 

Graphics metadata overrides: 
1. Drawing style (board+components) 
2. Behaviour

Diagram by Matthew Stephenson



Graph Games

Tahmina Begum 
• Masters thesis: Graph Theory Games 

Graphs are immutable 
• Site ownership 
• Vertex/edge/cell colouring 
• No components (pieces) 



Cell Phases
Face Colourings:  
• Colour each face 1..N such that no same-coloured faces share an edge 
• Typically visual guide (Chess) but can also affect play (Triad)



Cell Phases

Problem:  
• Symmetry is generally assumed 
   e.g. 3.6.3.6 dual technically 
          “correct” but not ideal 

(dual (tiling T3636 3)) 



Regions

Region : a set of sites 

1. User defined in the game logic 
       e.g. goal regions  
2. Pre-defined from the graph 
       e.g. top, corners (concave),  
               corners (convex), NE side, etc. 



Tracks

Track : ordered list of sites 

User defined in the game logic 

Can be assigned per player or  
shared (e.g. boustrophedon)  



3D Boards

Simulated 3D: 
• Side view 
• Offset stacking 
• Overhead view 
• Oblique view 

Full 3D support to come (GUI) 



Shared Boards

Ultimate Tic-Tac-Toe: 
• Nine 3x3 sub-games 
• One 3x3 supergame 

Modelled as a single graph: 
• Sites 0..80 = sub-games 
• Sites 81..88 = supergame 



Circular Boards
(board (circle {8})) 

(board (circle {8}) use:Vertex) 

(board (circle {4 8} stagger:true) 

(board 
   (splitCrossings 
      (merge 
         (shift .5 .5 (scale 1.42  
            (circle {8}))) (square 2) 
      ) 
   ) 
   use:Vertex 
)



Coordinates

Policy to use coordinate labels to 
identify sites (not indices) 
• e.g. Blue aims for E13 (not cell 98) 
• More human readable 



Coordinates

Coordinate generated using a  
general approachs: 

1. Find two principle axes 
    (approx. orthogonal)  
    that minimise  
    clustering error 

2. Cluster elements by  
    projection onto each axis 

Works for most cases 
…not so well for others 

Failsafe guarantees unique  
coords based on X and Y posn



Limits

Ludii contraints: 
• Maximum 8 dimensions 

No other size limit, except: 
• Memory 
• Time 

e.g. 36x36 board for 
       Taikyoku Shogi 



Future Work

Improve boardless games: 
• Supported using virtual boards 
• Inefficient  

Wraparound boards: 
• Cylinder 
• Sphere 
• Torus 
• Projective plane 

Better general coordinates: 
• Based on contours (active snakes?) 

Irregular and branching radials 

Full support for 3D game boards



Conclusion

http://ludeme.eu

D

L

P

igital
udeme
roject

http://ludii.games

General board representation: 
• Difficult task, many edge cases 
• Largely achieved in Ludii 
• A lot of work! 


